# FLENDER COUPLINGS

| Ν | -A | R | Ρ | Ε | Х |
|---|----|---|---|---|---|
|   |    |   |   |   |   |

Operating Instructions 8714en Edition 10/2017 ARN-6







| Introduction         | 1  |
|----------------------|----|
| Safety instructions  | 2  |
| Description          | 3  |
| Application planning | 4  |
| Assembly             | 5  |
| Commissioning        | 6  |
| Operation            | 7  |
| Maintenance          | 8  |
| Service and support  | 9  |
| Disposal             | 10 |
| Spare parts          | 11 |
| Technical data       | Α  |
| Quality documents    | В  |
| <b>_</b>             |    |

## FLENDER COUPLINGS

## N-ARPEX 8714en

**Operating Instructions** 

ARN-6

#### Legal information

#### Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

#### 

indicates that death or severe personal injury will result if proper precautions are not taken.

#### 

indicates that death or severe personal injury may result if proper precautions are not taken.

#### 

indicates that minor personal injury can result if proper precautions are not taken.

#### NOTICE

indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

#### **Qualified Personnel**

The product/system described in this documentation may be operated only by **personnel qualified** for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

#### Proper use of Flender products

Note the following:

#### 

Flender products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Flender. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

#### Trademarks

All names identified by ® are registered trademarks of Flender GmbH. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

#### **Disclaimer of Liability**

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

## Table of contents

| 1 | Introducti                                                                                 | on                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                      |
|---|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|   | 1.1                                                                                        | About these instructions                                                                                                                                                                                                                                                                                                                                                                                             | 9                                      |
|   | 1.2                                                                                        | Text attributes                                                                                                                                                                                                                                                                                                                                                                                                      | 9                                      |
|   | 1.3                                                                                        | Copyright                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                      |
| 2 | Safety ins                                                                                 | structions                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                     |
|   | 2.1                                                                                        | General information                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                     |
|   | 2.2<br>2.2.1<br>2.2.2                                                                      | Intended use<br>Rated torques, maximum torques, overload torques and friction-locked connections<br>Coupling service life                                                                                                                                                                                                                                                                                            | 13                                     |
|   | 2.3<br>2.3.1<br>2.3.2                                                                      | Safety instructions for a coupling when used in a hazardous zone<br>Marking<br>Conditions of use                                                                                                                                                                                                                                                                                                                     | 14                                     |
|   | 2.4                                                                                        | General warning notices                                                                                                                                                                                                                                                                                                                                                                                              | 16                                     |
| 3 | Descriptio                                                                                 | on                                                                                                                                                                                                                                                                                                                                                                                                                   | 19                                     |
| 4 | Applicatio                                                                                 | n planning                                                                                                                                                                                                                                                                                                                                                                                                           | 23                                     |
|   | 4.1                                                                                        | Transport of the coupling                                                                                                                                                                                                                                                                                                                                                                                            | 23                                     |
|   | 4.2                                                                                        | Storage of the coupling                                                                                                                                                                                                                                                                                                                                                                                              | 23                                     |
| 5 | Assembly                                                                                   | ۲                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                                     |
|   | 5.1<br>5.1.1<br>5.1.2<br>5.1.3<br>5.1.4                                                    | Preparatory work<br>Machine the finished bore<br>Milling the parallel keyway<br>Machining an axial locking mechanism<br>Balancing the coupling                                                                                                                                                                                                                                                                       | 26<br>27<br>27                         |
|   | 5.2<br>5.2.1<br>5.2.1.1<br>5.2.1.2<br>5.2.1.3<br>5.2.2<br>5.2.3<br>5.2.4<br>5.2.5<br>5.2.6 | Assembling the coupling<br>Assembling the hubs<br>Assembling hubs with shaft-hub connection through a parallel key<br>Assembling hubs with shaft and hub connected through a pressurized oil interference fit<br>Assembling the clamping hubs<br>Assembling couplings that are balanced as assembly<br>Aligning the units<br>Assembling the spacer<br>Assembling the intermediate unit<br>Assembling the plate pack. | 30<br>31<br>32<br>34<br>34<br>35<br>35 |
| 6 | Commiss                                                                                    | ioning                                                                                                                                                                                                                                                                                                                                                                                                               | 39                                     |
| 7 | Operatior                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                    | 41                                     |
|   | 7.1                                                                                        | Normal operation of the coupling                                                                                                                                                                                                                                                                                                                                                                                     | 41                                     |
|   | 7.2                                                                                        | Faults - causes and rectification                                                                                                                                                                                                                                                                                                                                                                                    | 41                                     |

|    | 7.2.1<br>7.2.2<br>7.2.2.1<br>7.2.2.2<br>7.2.3<br>7.2.3.1<br>7.2.3.2                                                                                          | Procedure in the event of malfunctions<br>Identifying the fault cause<br>Possible faults<br>Possible causes<br>Correcting faults<br>Replacing the plate pack<br>Correcting the changed alignment                                                                                                                                                                                                                                                                                                                                                                                 | 41<br>42<br>43<br>44<br>44                                                                                     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 8  | Maintenar                                                                                                                                                    | се                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |
|    | 8.1                                                                                                                                                          | Maintenance intervals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                |
|    | 8.2                                                                                                                                                          | Replacing the plate pack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45                                                                                                             |
|    | 8.3                                                                                                                                                          | Disassembling the coupling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |
|    | 8.3.1                                                                                                                                                        | Disassembling the spacer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |
|    | 8.3.2                                                                                                                                                        | Disassembling the intermediate unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |
|    | 8.3.3                                                                                                                                                        | Disassembling the hubs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |
|    | 8.3.3.1                                                                                                                                                      | Disassembling hubs with shaft-hub connection through a parallel key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |
|    | 8.3.3.2                                                                                                                                                      | Disassembling the hub with shaft and hub connected through a pressurized oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
|    | 8.3.3.3                                                                                                                                                      | interference fit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |
|    |                                                                                                                                                              | Disassembling the clamping hubs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                |
| 9  | Service a                                                                                                                                                    | nd support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55                                                                                                             |
|    | 9.1                                                                                                                                                          | Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55                                                                                                             |
| 10 | Disposal                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57                                                                                                             |
| 11 | Spare par                                                                                                                                                    | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59                                                                                                             |
|    | 11.1                                                                                                                                                         | Ordering spare parts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59                                                                                                             |
|    | 11.2                                                                                                                                                         | Spare parts drawing and spare parts list                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60                                                                                                             |
|    | 11.2.1                                                                                                                                                       | Type NEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61                                                                                                             |
|    | 44.0.0                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                |
|    | 11.2.2                                                                                                                                                       | Туре ВЕВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 62                                                                                                             |
|    | 11.2.2<br>11.2.3                                                                                                                                             | Туре ВЕВ<br>Туре BEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |
|    |                                                                                                                                                              | * 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63                                                                                                             |
|    | 11.2.3<br>11.2.4<br>11.2.5                                                                                                                                   | Type BEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 63<br>64                                                                                                       |
|    | 11.2.3<br>11.2.4                                                                                                                                             | Type BEN<br>Type MCECM<br>Screw plug<br>Additional hubs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63<br>64<br>65<br>65                                                                                           |
|    | 11.2.3<br>11.2.4<br>11.2.5                                                                                                                                   | Type BEN<br>Type MCECM<br>Screw plug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63<br>64<br>65<br>65                                                                                           |
| A  | 11.2.3<br>11.2.4<br>11.2.5<br>11.2.6<br>11.2.6.1                                                                                                             | Type BEN<br>Type MCECM<br>Screw plug<br>Additional hubs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63<br>64<br>65<br>65                                                                                           |
| A  | 11.2.3<br>11.2.4<br>11.2.5<br>11.2.6<br>11.2.6.1                                                                                                             | Type BEN<br>Type MCECM<br>Screw plug<br>Additional hubs<br>Clamping hub complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63<br>64<br>65<br>65<br>65                                                                                     |
| A  | 11.2.3<br>11.2.4<br>11.2.5<br>11.2.6<br>11.2.6.1<br><b>Technical</b><br>A.1<br>A.1.1                                                                         | Type BEN<br>Type MCECM<br>Screw plug<br>Additional hubs<br>Clamping hub complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63<br>64<br>65<br>65<br>65<br>67                                                                               |
| Α  | 11.2.3<br>11.2.4<br>11.2.5<br>11.2.6<br>11.2.6.1<br><b>Technical</b><br>A.1                                                                                  | Type BEN<br>Type MCECM<br>Screw plug<br>Additional hubs<br>Clamping hub complete<br>data<br>Torques, speeds, geometry data and weights                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63<br>64<br>65<br>65<br>65<br>67<br>67<br>68                                                                   |
| A  | 11.2.3<br>11.2.4<br>11.2.5<br>11.2.6<br>11.2.6.1<br><b>Technical</b><br>A.1<br>A.1.1<br>A.1.2<br>A.1.3                                                       | Type BEN<br>Type MCECM<br>Screw plug<br>Additional hubs<br>Clamping hub complete<br>data<br>Torques, speeds, geometry data and weights<br>Dimension drawing of type NEN<br>Technical data of type NEN<br>Dimension drawing of type BEB                                                                                                                                                                                                                                                                                                                                           | 63<br>64<br>65<br>65<br>67<br>67<br>67<br>68<br>69<br>70                                                       |
| Α  | 11.2.3<br>11.2.4<br>11.2.5<br>11.2.6<br>11.2.6.1<br><b>Technical</b><br>A.1<br>A.1.1<br>A.1.2                                                                | Type BEN<br>Type MCECM<br>Screw plug<br>Additional hubs<br>Clamping hub complete<br>data<br>Torques, speeds, geometry data and weights<br>Dimension drawing of type NEN<br>Technical data of type NEN<br>Dimension drawing of type BEB<br>Technical data of type BEB                                                                                                                                                                                                                                                                                                             | 63<br>64<br>65<br>65<br>65<br>67<br>67<br>68<br>69<br>70<br>71                                                 |
| A  | 11.2.3<br>11.2.4<br>11.2.5<br>11.2.6<br>11.2.6.1<br><b>Technical</b><br>A.1<br>A.1.1<br>A.1.2<br>A.1.3                                                       | Type BEN<br>Type MCECM<br>Screw plug<br>Additional hubs<br>Clamping hub complete<br>data<br>Torques, speeds, geometry data and weights<br>Dimension drawing of type NEN<br>Technical data of type NEN<br>Dimension drawing of type BEB                                                                                                                                                                                                                                                                                                                                           | 63<br>64<br>65<br>65<br>65<br>67<br>67<br>68<br>69<br>70<br>71                                                 |
| A  | 11.2.3<br>11.2.4<br>11.2.5<br>11.2.6<br>11.2.6.1<br><b>Technical</b><br>A.1<br>A.1.1<br>A.1.2<br>A.1.3<br>A.1.4                                              | Type BEN<br>Type MCECM<br>Screw plug<br>Additional hubs<br>Clamping hub complete<br><b>data.</b><br>Torques, speeds, geometry data and weights<br>Dimension drawing of type NEN<br>Technical data of type NEN<br>Dimension drawing of type BEB<br>Technical data of type BEB<br>Dimension drawing of type BEB<br>Technical data of type BEB<br>Dimension drawing of type BEN<br>Technical data of type BEN                                                                                                                                                                       | 63<br>64<br>65<br>65<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>                                             |
| A  | 11.2.3<br>11.2.4<br>11.2.5<br>11.2.6<br>11.2.6.1<br><b>Technical</b><br>A.1<br>A.1.1<br>A.1.2<br>A.1.3<br>A.1.4<br>A.1.5                                     | Type BEN<br>Type MCECM<br>Screw plug<br>Additional hubs<br>Clamping hub complete<br>data<br>Torques, speeds, geometry data and weights<br>Dimension drawing of type NEN<br>Technical data of type NEN<br>Dimension drawing of type BEB<br>Technical data of type BEB<br>Dimension drawing of type BEN<br>Technical data of type BEN<br>Technical data of type BEN<br>Dimension drawing of type BEN<br>Dimension drawing of type BEN<br>Dimension drawing of type BEN<br>Dimension drawing of type BEN                                                                            | 63<br>64<br>65<br>65<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>                                       |
| A  | 11.2.3<br>11.2.4<br>11.2.5<br>11.2.6<br>11.2.6.1<br><b>Technical</b><br>A.1<br>A.1.1<br>A.1.2<br>A.1.3<br>A.1.4<br>A.1.5<br>A.1.6<br>A.1.7<br>A.1.8          | Type BEN<br>Type MCECM<br>Screw plug<br>Additional hubs<br>Clamping hub complete<br>data<br>Torques, speeds, geometry data and weights<br>Dimension drawing of type NEN<br>Technical data of type NEN<br>Dimension drawing of type BEB<br>Technical data of type BEB<br>Dimension drawing of type BEB<br>Technical data of type BEB<br>Dimension drawing of type BEN<br>Technical data of type BEN<br>Technical data of type BEN<br>Technical data of type BEN<br>Technical data of type MCECM<br>Dimension drawing of type MCECM                                                | 63<br>64<br>65<br>65<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>                                       |
| A  | 11.2.3<br>11.2.4<br>11.2.5<br>11.2.6<br>11.2.6.1<br><b>Technical</b><br>A.1<br>A.1.1<br>A.1.2<br>A.1.3<br>A.1.4<br>A.1.5<br>A.1.6<br>A.1.7<br>A.1.8<br>A.1.9 | Type BEN<br>Type MCECM<br>Screw plug<br>Additional hubs<br>Clamping hub complete<br>data<br>Torques, speeds, geometry data and weights<br>Dimension drawing of type NEN<br>Technical data of type NEN<br>Dimension drawing of type BEB<br>Technical data of type BEB<br>Technical data of type BEB<br>Dimension drawing of type BEN<br>Technical data of type MCECM<br>Dimension drawing of type MCECM<br>Dimension drawing of the complete clamping hub | 63<br>64<br>65<br>65<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>                                       |
| A  | 11.2.3<br>11.2.4<br>11.2.5<br>11.2.6<br>11.2.6.1<br><b>Technical</b><br>A.1<br>A.1.1<br>A.1.2<br>A.1.3<br>A.1.4<br>A.1.5<br>A.1.6<br>A.1.7<br>A.1.8          | Type BEN<br>Type MCECM<br>Screw plug<br>Additional hubs<br>Clamping hub complete<br>data<br>Torques, speeds, geometry data and weights<br>Dimension drawing of type NEN<br>Technical data of type NEN<br>Dimension drawing of type BEB<br>Technical data of type BEB<br>Dimension drawing of type BEB<br>Technical data of type BEB<br>Dimension drawing of type BEN<br>Technical data of type BEN<br>Technical data of type BEN<br>Technical data of type BEN<br>Technical data of type MCECM<br>Dimension drawing of type MCECM                                                | 63<br>64<br>65<br>65<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>                                       |
| Α  | 11.2.3<br>11.2.4<br>11.2.5<br>11.2.6<br>11.2.6.1<br><b>Technical</b><br>A.1<br>A.1.1<br>A.1.2<br>A.1.3<br>A.1.4<br>A.1.5<br>A.1.6<br>A.1.7<br>A.1.8<br>A.1.9 | Type BEN<br>Type MCECM<br>Screw plug<br>Additional hubs<br>Clamping hub complete<br>data<br>Torques, speeds, geometry data and weights<br>Dimension drawing of type NEN<br>Technical data of type NEN<br>Dimension drawing of type BEB<br>Technical data of type BEB<br>Technical data of type BEB<br>Dimension drawing of type BEN<br>Technical data of type MCECM<br>Dimension drawing of type MCECM<br>Dimension drawing of the complete clamping hub | 63<br>64<br>65<br>65<br>67<br>67<br>67<br>67<br>67<br>67<br>70<br>71<br>72<br>73<br>74<br>75<br>76<br>77<br>79 |

|   | A.3.1       | Threaded joint C flange with the M hub | 80 |
|---|-------------|----------------------------------------|----|
|   | A.3.2       | Bolting of the complete clamping hub   |    |
|   | A.4         | Tightening procedure                   | 82 |
|   | A.5         | Lubricant                              | 82 |
| В | Quality doc | cuments                                | 83 |
|   | B.1         | Declaration of Conformity              | 83 |

## Tables

| Table 2-1  | General warnings                                                                                | 11 |
|------------|-------------------------------------------------------------------------------------------------|----|
| Table 2-2  | Temperature classes (TX) for explosive atmospheres as a result of gases, vapours or mists       | 16 |
| Table 4-1  | Types of preservative agents for long-term storage                                              | 24 |
| Table 5-1  | Recommended assigned fits for bores with parallel key connection                                | 26 |
| Table 5-2  | Tapped hole, tightening torque and width A/F for the N hub and the M hub                        | 28 |
| Table 7-1  | Table of faults                                                                                 | 42 |
| Table 11-1 | Spare parts list for type NEN                                                                   | 61 |
| Table 11-2 | Spare parts list for type BEB                                                                   | 62 |
| Table 11-3 | Spare parts list for type BEN                                                                   | 63 |
| Table 11-4 | Spare parts list for type MCECM                                                                 | 64 |
| Table 11-5 | Spare parts list for types KEK, KEN or BEK                                                      | 65 |
| Table A-1  | Torques, speeds, geometry data and weights of type NEN                                          | 69 |
| Table A-2  | Torques, speeds, geometry data and weights of type BEB                                          | 71 |
| Table A-3  | Torques, speeds, geometry data and weights of type BEN                                          | 73 |
| Table A-4  | Torques, speeds, geometry data and weights of type MCECM                                        | 75 |
| Table A-5  | Speeds, geometry data and weights of the complete terminal hub                                  | 77 |
| Table A-6  | Maximum torque that can be transmitted by the clamping hub depending on the finished bore       | 78 |
| Table A-7  | Maximum permissible shaft misalignment values during operation                                  | 79 |
| Table A-8  | Tightening torques and widths across flats for the bolt connection C flange with the M hub      | 80 |
| Table A-9  | Tightening torques and widths across flats for the bolt connection of the complete clamping hub | 81 |
| Table A-10 | Tightening procedure                                                                            | 82 |

## Figures

| Figure 3-1 | Type NEN                     | 20 |
|------------|------------------------------|----|
| Figure 3-2 | Туре МСЕСМ                   | 20 |
| Figure 3-3 | Plate design                 | 21 |
| Figure 4-1 | Transport symbols            | 23 |
| Figure 5-1 | Tolerances for finished bore | 27 |

| Figure 5-2  | Position of the balancing bore for single-plane balancing |    |
|-------------|-----------------------------------------------------------|----|
| Figure 5-3  | Position of the balancing bore for two-plane balancing    | 29 |
| Figure 5-4  | Complete clamping hub assembly (12) or (22)               |    |
| Figure 5-5  | Marking for balancing as assembly                         | 34 |
| Figure 5-6  | Assembling the intermediate unit                          |    |
| Figure 8-1  | Detailed view of the fitting bolt connection              | 47 |
| Figure 8-2  | Detailed view of the fitting bolt connection              | 48 |
| Figure 8-3  | Complete clamping hub assembly (12) or (22)               | 53 |
| Figure 11-1 | Spare parts drawing for type NEN                          | 61 |
| Figure 11-2 | Spare parts drawing for type BEB                          | 62 |
| Figure 11-3 | Spare parts drawing for type BEN                          | 63 |
| Figure 11-4 | Spare parts drawing for type MCECM                        | 64 |
| Figure 11-5 | Screw plug                                                | 65 |
| Figure A-1  | Type NEN                                                  | 68 |
| Figure A-2  | Туре ВЕВ                                                  | 70 |
| Figure A-3  | Type BEN                                                  | 72 |
| Figure A-4  | Туре МСЕСМ                                                | 74 |
| Figure A-5  | Clamping hub                                              | 76 |

## Introduction

## 1.1 About these instructions

These instructions describe the coupling and provide information about its handling - from assembly to maintenance. Please keep these instructions for later use.

Please read these instructions prior to handling the coupling and follow the information in them.

## 1.2 Text attributes

The warning notice system is explained on the back of the inner cover. Always follow the safety information and notices in these instructions.

In addition to the warning notices, which have to be observed without fail, you will find the following text attributes in these instructions:

- 1. Procedural instructions are shown as a numbered list. Always perform the steps in the order given.
- Lists are formatted as bulleted lists.
  - The dash is used for lists at the second level.
- (1) Numbers in brackets are part numbers.

#### Note

A note is an important item of information about the product, the handling of the product or the relevant section of the instructions. The note provides you with help or further suggestions/ ideas.

## 1.3 Copyright

The copyright of these instructions is held by Flender.

These instructions must not be used wholly or in parts without our authorisation or be given to third parties.

If you have any technical queries, please contact our factory or one of our service outlets (refer to Service and support (Page 55)).

Introduction

1.3 Copyright

## Safety instructions

## 2.1 General information

#### Instructions

These instructions are part of the delivery. Always keep these instructions close to the coupling.

Please make sure that every person who is commissioned to work on the coupling has read and understood these instructions prior to handling the coupling and observes all of the points.

Only the knowledge of these instructions can avoid faults on the coupling and ensure fault-free and safe operation. Non-adherence to the instructions can cause product or property damage or personal injury. Flender does not accept any liability for damage or operating failures that are due to non-adherence to these instructions.

#### State of the art

The coupling described here has been designed in consideration of the latest findings for demanding technical requirements. This coupling is state-of-the-art at the time of printing these instructions.

In the interest of further development, Flender reserves the right to make such changes to the individual components and accessories that increase performance and safety while maintaining the essential features.

#### Symbols

| Table 2-1 | General warnings |
|-----------|------------------|
|           |                  |

| ISO        | ANSI | Warning                                                          |
|------------|------|------------------------------------------------------------------|
|            | ダ    | Warning - hazardous electrical voltage                           |
| k          |      | Warning - explosive substances                                   |
|            |      | Warning - entanglement hazard                                    |
|            |      | Warning - hot surfaces                                           |
| $\bigstar$ |      | Warning - substances that are harmful to health or are irritants |

2.1 General information

| ISO        | ANSI | Warning                        |
|------------|------|--------------------------------|
|            |      | Warning - corrosive substances |
|            |      | Warning - suspended load       |
|            |      | Warning - hand injuries        |
| < <u>(</u> | x    | ATEX certification             |

#### Explanation regarding Machinery Directive 2006/42/EC

The couplings described here are "components" in accordance with the Machinery Directive and do not require a declaration of incorporation.

#### **ATEX Directive**

The term "ATEX Directive" used in these instructions stands for the harmonisation legislation of the European Union in compliance with the declaration of conformance for equipment and protective systems for correct use in hazardous zones.

#### **Protective clothing**

In addition to the generally prescribed personal protective equipment (safety shoes, overalls, helmet, etc.), also wear suitable safety gloves and safety goggles when handling the coupling.

#### Using the coupling

The relevant work safety and environmental protection regulations must be complied with at all times during transport, assembly, installation, dismantling, operation and maintenance of the coupling.

Only qualified personnel may operate, assemble, maintain and repair the coupling. Information about qualified personnel can be found in the legal notes at the beginning of these instructions.

If lifting gear or load suspension devices are used for transporting, these have to be suitable for the weight of the coupling.

If the coupling has visible damage, it may not be assembled or put into operation.

The coupling may only be operated in a suitable housing or with touch protection according to applicable standards. This also applies to test runs and rotational direction checks.

#### Work on the coupling

Only carry out work on the coupling when it is not in operation and is not under load.

Secure the drive unit against being switched on accidentally. Attach a notice to the switch stating clearly that work is being carried out on the coupling. Ensure that the entire unit is not under load.

## 2.2 Intended use

Only use the coupling according to the conditions specified in the service and delivery contract and the technical data in the annex. Deviating operating conditions are considered improper use. The user or owner of the machine or plant is solely liable for any resulting damage.

When using the coupling please specifically observe the following:

- Do not make any modifications to the coupling that go beyond the permissible machining described in these instructions. This also applies to touch protection facilities.
- Use only original spare parts from Flender. Flender only accepts liability for original spare parts from Flender.

Other spare parts are not tested and approved by Flender. Non-approved spare parts may possibly change the design characteristics of the coupling and thus impact active and/or passive safety.

Flender will accept no liability or warranty whatsoever for damage occurring as a result of the use of non-approved spare parts. The same applies to any accessories that were not supplied by Flender.

If you have any queries, please contact our customer service (see Service and support (Page 55)).

## 2.2.1 Rated torques, maximum torques, overload torques and friction-locked connections

#### **Rated torques**

Rated torques  $T_{KN}$  are listed in the technical data for the particular type.

#### Maximum torques

Maximum torque  $T_{max}$  is the largest load that acts on the coupling in normal operation.

Maximum torque  $T_{\rm max}$  is permissible up to 5 times per hour, and must be less than the coupling maximum torque  $T_{\rm Kmax}$ 

The maximum coupling torque  $T_{Kmax}$  is 2 times the rated torque  $T_{KN}$ .

#### **Overload torques**

Overload torque  $T_{OL}$  is the highest load that acts on the coupling for special, infrequent operating states. It is only permissible that the overload state lasts for just fractions of a second.

Overload torque  $T_{\rm OL}$  is permissible up to 1 time per month, and must be less than the coupling overload torque  $T_{\rm KOL}.$ 

2.3 Safety instructions for a coupling when used in a hazardous zone

Coupling overload torque  $T_{KOL}$  is 2.5 times the rated torque  $T_{KN}$ .

Note

Carry out a visual inspection if an overload torque has occurred.

#### Friction-locked connections in hazardous zones

Shaft-hub connections using a pressurized oil interference fit or clamping hub connections belong to friction-locked connections.

In hazardous zones, the maximum torque that can occur in operation must not exceed the maximum torque that can be transmitted using the friction-locked connection.



#### /!\ WARNING

Risk of explosion when the maximum torque that can be transmitted by the friction-locked connection is exceeded

Refer to the dimension drawing provided for the maximum torque of the pressurized oil interference fit that can be transmitted.

Refer to Section Technical data of the complete clamping hub (Page 77) for the maximum clamping hub connection torque that can be transmitted.

### 2.2.2 Coupling service life

N-ARPEX couplings are not subject to any wear. The couplings have an unlimited service life when professionally and correctly mounted and when used as intended.

## 2.3 Safety instructions for a coupling when used in a hazardous zone

#### 2.3.1 Marking

You can find a description of the coupling parts in chapter Description (Page 19).

A coupling designed in accordance with the ATEX Directive has a marking on the coupling parts.

One of the coupling components (e.g. the hub) has one of the following markings on the outer diameter.

2.3 Safety instructions for a coupling when used in a hazardous zone

| Version 1:                   |                                            |      |                                        |
|------------------------------|--------------------------------------------|------|----------------------------------------|
| Flender GmbH                 | CE                                         | (Ex) | II 2G c IIC TX X                       |
| 46393 Bocholt - Germany      |                                            | (Ex) | II 2D c TX X                           |
| FLENDER couplings<br>N-ARPEX | <year man-<br="" of="">ufacture&gt;</year> | -    | I M2 c TX X                            |
|                              |                                            |      |                                        |
| Version 2:                   |                                            |      |                                        |
| Version 2:<br>Flender GmbH   | CE                                         | (Ex) | II 2G c IIC TX -50 °C ≤ Ta ≤ +280 °C X |
|                              | CE                                         | (Ex) |                                        |

All other components have the stamp  $\langle Ex \rangle$ . For small components, the packaging can also have markings.

#### Undrilled or predrilled couplings

A coupling part with Ex marking, the letter "U" and the Flender order number has been delivered undrilled or predrilled.

#### Note

#### Undrilled or predrilled couplings with Ex marking

Flender only supplies an undrilled or predrilled coupling with Ex marking on the condition that the customer assumes the responsibility and liability for correct finishing work in a declaration of exemption.

#### 2.3.2 Conditions of use

A coupling designed in accordance with the ATEX Directive is suitable for the following conditions of use:

- Equipment group I •
  - Category M2
- Equipment group II •
  - Category 2 and 3
  - Group of substances G, zone 1 and 2
  - Group of substances D, zone 21 and 22
  - Explosion group IIA, IIB and IIC

2.4 General warning notices

#### Conditions of use for products with TX marking

The maximum ambient temperature stated in the following tables applies to the temperature in the direct vicinity of the coupling and the temperature of adjacent components.

#### 1. Gases, vapours or mists

Check the ambient temperature for use of the coupling in the relevant temperature class.

Table 2-2 Temperature classes (TX) for explosive atmospheres as a result of gases, vapours or mists

| Max. ambient temperature | Temperature class |
|--------------------------|-------------------|
| 280 °C                   | T1                |
| 260 °C                   | T2                |
| 180 °C                   | Т3                |
| 115 °C                   | T4                |
| 80 °C                    | T5                |
| 65 °C                    | Т6                |

#### 2. Dust/air mixtures

Check the ambient temperature.

The maximum surface temperature (TX) of the coupling for an explosive atmosphere as a result of dust/air mixtures is obtained from the maximum ambient temperature.

#### Notes concerning operation of the coupling in potentially explosive atmospheres

- Only use the coupling underground in mines in potentially explosive atmospheres together with drive motors that can be switched off in the event of the formation of an explosive atmosphere.
- Earth machines that are connected via the coupling with a leakage resistance of less than 10<sup>6</sup> Ω.
- If you want to use a coated coupling in potentially explosive atmospheres, please note the requirements concerning the conductivity of the paint and the limitation on the paint layer thickness applied in accordance with EN 13463-1. A build-up of electrostatic charges is not to be expected with a paint layer thickness of less than 200 µm.

## 2.4 General warning notices



#### 

Danger due to bursting of the coupling

The coupling may burst if it is not used properly. There is a risk of fatal injury from flying fragments. Bursting of the coupling can lead to an explosion in potentially explosive atmospheres.

• Use the coupling for the purpose for which it is intended.

2.4 General warning notices



## 

### Risk of explosion when using coupling parts without Ex marking

Coupling parts without Ex marking have not been approved for use in potentially explosive atmospheres. These coupling parts can lead to an explosion during operation.

• Only use couplings with Ex marking in potentially explosive atmospheres.



## 

#### Danger

Risk of injury due to the use of unsuitable and/or damaged components. The use of unsuitable and/or damaged components can lead to an explosion in potentially explosive atmospheres.

• Observe the information regarding conditions of use.



#### 

### Danger of explosion

Improper operation of the coupling can lead to an explosion in potentially explosive atmospheres.

• Please observe the notes concerning operation of the coupling in potentially explosive atmospheres.



## 

### Danger from hot coupling parts

Risk of injury due to hot surfaces. Hot coupling parts can lead to an explosion in potentially explosive atmospheres.

- Wear suitable protective equipment (gloves, safety goggles).
- Ensure that the area is not at risk of explosion.



#### 

#### Risk of chemical burns due to chemical substances

There is a risk of chemical burns when handling aggressive cleaning agents.

- Please observe the manufacturer's information on how to handle cleaning agents and solvents.
- Wear suitable protective equipment (gloves, safety goggles).

## 

### Physical injury

Risk of injury due to falling coupling parts.

• Secure the coupling parts to prevent them from falling.

Safety instructions

2.4 General warning notices

## Description

The N-ARPEX couplings described here are torsionally-rigid multiple disk couplings that are free of torsional backlash and are available in various types and sizes. The couplings can be used in accordance with the ATEX Directive in potentially explosive atmospheres if they have a CE marking.

These instructions describe mounting and operating an N-ARPEX coupling in a horizontal arrangement. The shaft-hub connection is available in the following versions:

- Shaft-hub connection using a cylindrical or tapered bore with parallel key according to DIN 6885/1.
- Shaft-hub connection using a cylindrical or tapered bore with pressurized oil interference fit.
- Shaft-hub connection using a clamping hub.

Please consult Flender if you want to use a different type of installation.

#### Application

N-ARPEX couplings are designed for use in all kinds of machines and comply with the requirements laid down in API 610. Types NEN and MCECM can be optionally implemented according to API 671.

#### Design

N-ARPEX couplings are all-steel couplings. Plate packs are arranged between the flanges, which are bolted with one another on alternating sides.

The plate packs comprise hexagonal ring plates that are crimped together.

Collar bolts and nuts are used to connect the plate packs to the flanges. A capture assembly secures the spacer if the plates were to break.

The N-ARPEX coupling is torsionally stiff and transmits the torque without any backlash through the arrangement of the plate packs. The coupling can absorb axial, radial and angular offset of the connected loads.

The diagrams show the ARN-6 series, types NEN and MCECM with their various components, the associated part numbers and the plate design.

Additional types are shown in Section Spare parts drawing and spare parts list (Page 60).

For the components of the plate packs, refer to the associated mounting instructions provided in Section Assembling the plate pack (Page 38).



Figure 3-1 Type NEN



If not expressly ordered in any other way, intermediate unit CEC (18; 4; 3; 4; 28) is supplied already mounted.



Description

## **Application planning**

Check the delivery for damage and for completeness. Report any damage and/or missing parts to Flender immediately.

The coupling is delivered in individual parts and preassembled groups. Preassembled groups may not be dismantled.

#### Transport of the coupling 4.1



#### WARNING

#### Severe personal injury due to improper transport

Severe personal injury due to falling components or due to crushing. Damage to coupling parts possible due to use of unsuitable transport means.

- Only use lifting gear and load suspension devices with sufficient load bearing capacity for transport.
- Please observe the symbols applied on the packaging.

If not specifically contractually agreed otherwise, the packaging complies with the HPE Packaging Directive.



Figure 4-1 Transport symbols

dry

#### 4.2 Storage of the coupling

#### NOTICE

Property damage due to improper storage

Negative changes to the physical properties of the coupling and/or coupling damage.

Please observe the information about storing the coupling.

4.2 Storage of the coupling

The coupling, unless not specifically ordered otherwise, is supplied with preservation and can be stored for up to 3 months.

#### Note

#### Information about storing the coupling

- Ensure that the storage room is dry (relative humidity < 65 %) and free of dust.
- Ensure that there is no condensation.
- Do not store the coupling together with corrosive chemicals, acids, caustic solutions, etc.
- Store the coupling on suitable supports or in suitable containers.

#### Long-term storage

#### NOTICE

#### Property damage due to improper long-term storage

Negative changes to the physical properties of the coupling and/or coupling damage.

- Note the handling instructions for long-term storage.
- 1. You can find the required type of preservative agent in the following table (types of preservative agents for long-term storage).
- 2. Clean the coupling parts.
- 3. Apply the stipulated preservative agent.
- 4. Store the coupling parts.

Table 4-1 Types of preservative agents for long-term storage

| Preservative agents         | Features                                  | Indoor storage  | Outdoor storage |  |
|-----------------------------|-------------------------------------------|-----------------|-----------------|--|
| Oil spray                   | Anti-corrosion agent                      | Up to 12 months | Up to 4 months  |  |
| Tectyl 846 or similar       | Long-term preservative agent on wax basis | Up to 36 months | Up to 12 months |  |
| Emulsion cleaner + VCI foil | Active system, reusable                   | Up to 5 years   | Up to 5 years   |  |

## Assembly

Assembly of the coupling comprises the following steps:

- Preparatory work (Page 25)
- Assembling the coupling (Page 29)



### 

#### Danger due to bursting of the coupling

If you do not observe the information stipulated here regarding assembly, this can lead to bursting of the coupling during operation. There is a risk of fatal injury from flying fragments. Bursting of the coupling can lead to an explosion in potentially explosive atmospheres.

• Please observe all the stipulations concerning assembly.

#### Note

#### Information about the assembly of the coupling

- Only use undamaged components for the assembly of the coupling.
- Follow the assembly sequence.
- Please ensure that there is sufficient space at the assembly location and that the location is tidy and clean in order to be able to assemble and maintain the coupling without any risk.
- If a dimension drawing has been created for the coupling, please observe the information it contains as a matter of priority.

## 5.1 Preparatory work

#### Note

Please consult Flender if you want to machine a conical finished bore.

Carry out the following steps if the coupling does not have a finished bore:

- Machine the finished bore (Page 26)
- Milling the parallel keyway (Page 27)
- Machining an axial locking mechanism (Page 27)
- Balancing the coupling (Page 29)

5.1 Preparatory work

#### Note

The customer is responsible for execution of the finishing work on the coupling. Flender shall have no liability whatsoever for claims under warranty arising from finishing work that has not been carried out adequately.

### 5.1.1 Machine the finished bore

The diameter of the finished bore depends on the shaft used.

#### Recommended assigned fits

In the following table you can find the recommended assigned fits for bores with a parallel key connection.

| Table 5-1 | Recommended assigned fits for bores with parallel key connection |
|-----------|------------------------------------------------------------------|
|-----------|------------------------------------------------------------------|

| Description     | Interference fit                 |    |    |    |                                      |    |    |    |        |    |
|-----------------|----------------------------------|----|----|----|--------------------------------------|----|----|----|--------|----|
|                 | Suitable for reversing operation |    |    |    | not suitable for reversing operation |    |    |    | ration |    |
| Shaft tolerance | h6                               | k6 | m6 | n6 | p6                                   | h6 | k6 | m6 | n6     | p6 |
| Bore tolerance  | P7                               | M7 | K7 | J7 | H7                                   | N7 | H7 | H7 | H7     | F7 |

#### Procedure

- 1. Remove the preservation and clean the hubs to be machined.
- 2. Clamp the coupling to the areas marked with **Г** in the diagram below.
- 3. Machine the finished bore in accordance with the diagram below.

#### Note

#### Diameter of the finished bore

The diameter of the finished bore may not exceed the specified maximum diameter.

 Please observe the maximum diameters specified in section Torques, speeds, geometry data and weights (Page 67).

### Assembly

5.1 Preparatory work



Figure 5-1 Tolerances for finished bore

## 5.1.2 Milling the parallel keyway

#### Position of the parallel keyway

Arrange the parallel keyway with sufficient clearance to the pulling-off holes.

#### Applicable standards

- For one parallel keyway, machine it according to DIN 6885/1 ISO P9.
- For two parallel keyways, machine them according to DIN 6885/1 ISO JS9.
- If you want to mill a parallel keyway that does not correspond to DIN 6885/1, please consult Flender.

### 5.1.3 Machining an axial locking mechanism

The hub is secured by a set screw or an end plate to prevent axial motion. Please consult Flender if you want to use an end plate. Note the following when using a set screw:

- Diameter and axial position of the tapped hole in the hub
- Position of the tapped hole with respect to the parallel keyway
- Selection of the set screw

#### Diameter and axial position of the tapped hole in the hub

The axial position of the tapped hole is in the centre of the hub.

5.1 Preparatory work

The set screw size may be a maximum of 2/3 of the parallel keyway width.

The following table lists the tightening torques and the widths A/F for the set screws.

| Tapped hole<br>d₁ | Tightening torque<br>T <sub>A</sub><br>Nm | Width across flats<br>Hexagon socket wrench<br>mm |
|-------------------|-------------------------------------------|---------------------------------------------------|
| M5                | 2                                         | 2.5                                               |
| M6                | 4.8                                       | 3                                                 |
| M8                | 10                                        | 4                                                 |
| M10               | 17                                        | 5                                                 |
| M12               | 40                                        | 6                                                 |
| M16               | 80                                        | 8                                                 |
| M20               | 140                                       | 10                                                |
| M24               | 240                                       | 12                                                |

 Table 5-2
 Tapped hole, tightening torque and width A/F for the N hub and the M hub

Apply the recommended tightening torques in accordance with the stipulations in section Tightening procedure (Page 82).

#### Position of the tapped hole with respect to the parallel keyway

The tapped hole for the set screw is positioned on the parallel keyway.

#### Selection of the set screw

| Physical injury                                                                   |  |
|-----------------------------------------------------------------------------------|--|
| Danger of injury from protruding set screw.                                       |  |
| <ul> <li>Please observe the information about selecting the set screw.</li> </ul> |  |

As set screws use threaded studs in accordance with ISO 4029 with a toothed cup point. The size of the set screw is determined by the bore made. The set screw should fill out the tapped hole as much as possible and must not protrude beyond the hub.

## 5.1.4 Balancing the coupling

#### Notes on balancing the coupling

Please note the following when balancing the coupling:

- Select the balancing quality according to the application (but at least G16 in accordance with DIN ISO 21940).
- Observe the balancing specification according to DIN ISO 21940-32.
- Machine the balancing bore on a large radius with adequate clearance to the flange bores and the outer contour.



Balancing bore







## 5.2 Assembling the coupling

#### NOTICE

#### Property damage

Damage to the shaft end, the hubs and/or the parallel key.

• Note the handling instructions regarding assembling the coupling.

Assembly of the coupling comprises the following steps:

- Assembling the hubs (Page 30)
- Assembling couplings that are balanced as assembly (Page 34)
- Aligning the units (Page 34)
- Assembling the spacer (Page 35)
- Assembling the intermediate unit (Page 35)
- Assembling the plate pack (Page 38)

### 5.2.1 Assembling the hubs

#### NOTICE

#### Property damage

Damage to the shaft end, the hub and/or the parallel key.

• Note the handling instructions regarding assembling the hub.

The procedure for assembling the hubs varies depending on the selected shaft-hub connection.

- Assembling hubs with shaft-hub connection through a parallel key (Page 30)
- Assembling hubs with shaft and hub connected through a pressurized oil interference fit (Page 31)
- Assembling the clamping hubs (Page 32)

#### 5.2.1.1 Assembling hubs with shaft-hub connection through a parallel key

#### Procedure

- 1. Unscrew the set screw until it is no longer possible for there to be a collision with the parallel key or the shaft.
- 2. Clean the bores, shaft ends, fitting holes and contact surfaces.
- 3. Coat the bores of the hubs and the shafts with  $MoS_2$  assembly paste (e.g. Microgleit LP 405).

4. Place the hubs on the shaft.

#### Note

#### Hubs with tapered bore

Mount the hubs with tapered bore and parallel keyway on the shaft in the cold condition. Secure the hubs with suitable end plates without pulling the coupling parts further onto the tape (fitting dimension = 0) - or according to the dimension drawing provided.

#### Note

#### Hubs with cylindrical bore

To make assembly easier, you can heat hubs with cylindrical bore up to a maximum of 150 °C if required. Protect adjacent components against damage and heating to temperatures above 80 °C.

- 5. Secure the hubs using a set screw or an end plate. When securing with a set screw, the shaft must not protrude or be set back from the inner side of the hub.
- Tighten up the set screw or the screw to attach the end plate to the specified tightening torque T<sub>A</sub> (for the set screw please see section Machining an axial locking mechanism (Page 27)).

#### 5.2.1.2 Assembling hubs with shaft and hub connected through a pressurized oil interference fit

Shaft-hub connections using a pressurized oil interference fit belong to friction-locked connections.

In hazardous zones, the maximum torque that can occur in operation must not exceed the maximum torque that can be transmitted using the friction-locked connection.



#### 

Risk of explosion when the maximum torque that can be transmitted by the friction-locked connection is exceeded

Refer to the dimension drawing provided for the maximum torque of the pressurized oil interference fit that can be transmitted.

#### Procedure

- 1. Unscrew the screw plugs (10) and/or (20) from the hubs.
- 2. Clean the bores, shaft ends, fitting holes and contact surfaces.
- 3. Degrease and dry the bores and shaft ends.
- 4. Clean and dry the oil channels and the oil circulation grooves.
- 5. Protect adjacent components against damage and heating to temperatures above 80 °C.
- 6. Heat up the hub to the temperature specified in the dimension drawing. Make sure that no dirt or contaminants can soil the bores again during the heating process.
- 7. Mount the hubs quickly on the shaft according to the instructions in the dimension drawing.

- 8. Secure the hubs to stop them from moving until they have cooled down.
- 9. Allow the hubs to cool down to the ambient temperature.
- 10.Use an end plate to secure the hubs that have a tapered pressurized oil interference fit.
- 11. In order to protect the oil channels of the hubs against corrosion, fill them with a suitable pressurized oil. Close the oil ducts using the screw plugs (10) and/or (20).

#### 5.2.1.3 Assembling the clamping hubs

Shaft-hub connections using clamping hub connections belong to friction-locked connections.

In hazardous zones, the maximum torque that can occur in operation must not exceed the maximum torque that can be transmitted using the friction-locked connection.



#### │ ∕ !∖ WARNING

Risk of explosion when the maximum torque that can be transmitted by the friction-locked connection is exceeded

Refer to Section Torques, speeds, geometry data and weights (Page 67) for the maximum clamping hub connection torque that can be transmitted.

#### Note

The complete clamping hub assembly (12) or (22) is supplied ready to be installed. Do not dismantle the clamping hub (7) and the clamping ring (5) before assembling for the first time.

#### NOTICE

Coupling damage by combining various different parts.

Only use the complete clamping hub assembly (12) or (22) supplied from the manufacturer. Do not combine parts from various complete clamping hub assemblies.

#### NOTICE

Incorrect cleaning can diminish the reliability of torque transmission

Ensure that the bore of the clamping hub (7) and shaft (4) in the area of the clamping ring seat are absolutely clean and free of any grease and oil.

- Only use clean cloths and solvent.
- Use solvents or chemical cleaning agents free of any oil.

#### Procedure

- 1. Clean the bores and shaft ends.
- 2. Check that all of the parts are in a perfect condition.
- 3. Slightly release the clamping bolts (1).
- 4. Slightly withdraw the clamping ring (5) from the clamping hub (7) so that the clamping ring (5) is loose.

- 5. Place the complete clamping hub assembly (12) or (22) on the shaft.
- 6. Tighten the clamping bolts (1) one after the other as follows:
  - When going around the circumference for the first time, use half the tightening torque from Section Bolting of the complete clamping hub (Page 81).
  - When going around the circumference for the second time and for all other iterations, apply the full tightening torque from Section Bolting of the complete clamping hub (Page 81).
  - Once you have reached the tightening torque, and the clamping ring (5) is located at the flange of the clamping hub (7), then the complete clamping hub assembly (12) or (22) has been correctly assembled.
- 7. Contact Flender if the clamping ring (5) is not in contact with the clamping hub (7).



125 Clamping hub complete, type 125

Figure 5-4 Complete clamping hub assembly (12) or (22)

#### Assembly

5.2 Assembling the coupling

## 5.2.2 Assembling couplings that are balanced as assembly

#### NOTICE

#### Material damage as a result of inadequate balance quality

Negative impact on the balance quality by not observing the marking.

- Only bolt coupling parts together with the same numbers at the outer diameter.
- Arrange the coupling parts so that the numbers are in one line and can be read from one direction (see the diagram).

For couplings, which are balanced as assembly, each individual coupling components has a multi-digit number at the outer flange diameter.

In the diagram, as example, the number 9999 is selected.



### 5.2.3 Aligning the units

#### Procedure for types NEN or MCECM

- 1. Move the machines to be coupled close to one another. Observe clearance S for types NEN or MCECM in Section Torques, speeds, geometry data and weights (Page 67).
- 2. Carefully align the machines.
- 3. For type MCECM, mount the intermediate unit. Observe the instructions provided in Section Assembling the intermediate unit (Page 35).

- 4. For type NEN, mount the spacer. Observe the instructions provided in Section Assembling the spacer (Page 35).
- 5. For type NEN, mount the plate pack. Observe the instructions provided in the associated assembly instructions from Section Assembling the plate pack (Page 38).

#### Procedure for types BEB or BEN

- 1. For type BEN, position the plate pack between the spacer and a B hub. For type BEB, position the plate packs between the spacer and two B hubs.
- 2. Mount the spacer. Observe the instructions provided in Section Assembling the spacer (Page 35).
- 3. Move the machines to be coupled close to one another. Observe clearance S1 for types BEB or BEN in Section Torques, speeds, geometry data and weights (Page 67).
- 4. Carefully align the machines.
- 5. For type BEN, position the plate pack between the spacer and a N hub.
- 6. Assembling the plate pack. Observe the instructions provided in the associated assembly instructions from Section Assembling the plate pack (Page 38).

#### 5.2.4 Assembling the spacer

#### Procedure

- 1. Clean the spacer.
- 2. Check the fitting holes and the contact surface of the flange to ensure that they are in a perfect condition.
- 3. Position the spacer. Hold or support the spacer.
- 4. Align the bolting points. Observe any markings that might be provided corresponding to Section Assembling couplings that are balanced as assembly (Page 34).

### 5.2.5 Assembling the intermediate unit

#### The intermediate unit is supplied as individual parts

- 1. Clean the spacer.
- 2. Check the centering, the fitting holes and the contact surfaces of the flange to ensure that they are in a perfect condition.
- 3. Assemble the individual parts to create the intermediate unit. Observe the instructions provided in the associated assembly instructions from Section Assembling the plate pack (Page 38).

- 4. Attach the spacers (81) and the screws (82) of the transport lock.
- 5. Assemble the intermediate unit corresponding to the following instructions. Start with Point 4.

#### Preassembled intermediate unit

- 1. The intermediate unit with preassembled plate packs remains assembled. The plate packs are secured using transport locks (81; 82).
- 2. Clean the intermediate unit.
- 3. Check the centering and the contact surfaces of the flange to ensure that they are in a perfect condition.
- 4. Tighten screws (82) one after the other until the spacers (81) are in contact with the flange.
- 5. Position the intermediate unit between the flanges. Hold or support the intermediate unit.
- 6. Align the bolting points. Observe any markings that might be provided corresponding to Section Assembling couplings that are balanced as assembly (Page 34).
- 7. Tighten the bolts (91) finger-tight.
- 8. Remove the screws (82) and spacers (81).

#### Danger when operated with transport locks

Remove all of the transport locks (81 and 82), before you tighten screws (91) with the specified tightening torque.

9. Tighten the screws (91) diagonally and evenly with the specified tightening torque. The tightening torques are listed in Section Threaded joint C flange with the M hub (Page 80).
5.2 Assembling the coupling



- 3 Spacer
- 4 Plate pack
- 11 Hub
- 18 C flange
- 21 Hub
- 28 C flange
- 81 Spacer (transport lock)
- 82 Screw (transport lock)
- 91 Screws
- 1 Individual unit X: Transport lock

Figure 5-6 Assembling the intermediate unit

5.2 Assembling the coupling

### 5.2.6 Assembling the plate pack

Assemble the plate pack corresponding to the associated assembly instructions.

Plate packs are supplied in individual packages. The scope of delivery includes German assembly instructions for the plate packs. Instructions in other languages must be separately ordered.

The following data and instructions are included in the assembly instructions for plate packs.

- Instructions to assemble plate packs.
- Tightening torques for bolting the plate packs.
- Data on aligning the coupling.

Refer to the table for the associated assembly instructions.

| Series | Туре                                  | Assembly instructions |
|--------|---------------------------------------|-----------------------|
| ARN-6  | 3-part; with fitting screw connection | AN 4280               |
|        | NEN, BEB, BEN, KEK, KEN, BEK          |                       |
|        | 5-part; with fitting screw connection |                       |
|        | MCECM                                 |                       |

# Commissioning



#### 

#### Danger due to igniting deposits

During use in potentially explosive atmospheres deposits from heavy metal oxides (rust) can ignite due to friction, impact or friction sparks and lead to an explosion.

• Ensure through the use of an enclosure or other suitable measures that the deposition of heavy metal oxides (rust) on the coupling is not possible.

In order to ensure safe commissioning, carry out various tests prior to commissioning.

#### Testing before commissioning



## 

#### Danger

Overload conditions can occur during the commissioning of the coupling. The coupling can burst and metal parts can be flung out. There is a risk of fatal injury from flying fragments. Bursting of the coupling can lead to an explosion in potentially explosive atmospheres.

- Carry out the tests prior to commissioning.
- Do not touch the rotating coupling.
- 1. Carefully check that all of the transport locks (81) and (82) have been removed.
- Check the tightening torques of the screws of the coupling in accordance with section Tightening torques and widths A/F (Page 80) and in accordance to the associated assembly instructions from Section Assembling the plate pack (Page 38).
- 3. Check the tightening torques of the foundation bolts of the coupled machines.
- 4. Check whether suitable enclosures (ignition protection, coupling guard, touch protection) have been installed and that the function of the coupling has not been adversely affected by the enclosure. This also applies to test runs and rotational direction checks.

Commissioning

# Operation

# 7.1 Normal operation of the coupling

The coupling runs quietly and shock-free during normal operation.

## 7.2 Faults - causes and rectification

A form of behaviour which is different to normal operation is classed as a fault and has to be rectified immediately.

Look out specifically for the following faults during coupling operation:

- Unusual coupling noise
- Sudden occurrence of shocks

#### 7.2.1 Procedure in the event of malfunctions



#### 

#### Danger due to bursting of the coupling

There is a risk of fatal injury from flying fragments. Bursting of the coupling can lead to an explosion in potentially explosive atmospheres.

- Switch off the unit at once if any malfunctions occur.
- Note during the maintenance work the possible causes of faults and the notes on rectifying them.

Proceed as described below if there is a malfunction of the coupling during operation:

- 1. De-energise the drive immediately.
- 2. Initiate the required action for repair, taking into consideration the applicable safety regulations.

If you cannot determine the cause or if you cannot carry out repair work with your own means, request one of our customer service technicians.

#### 7.2.2 Identifying the fault cause

Faults occur frequently due to application errors or they occur due to operational circumstances such as wear of wearing parts or changes to the system.

7.2 Faults - causes and rectification

The faults and fault causes listed below only serve as an indication for troubleshooting. In the case of a complex system be sure to include all the system components in the search for the fault.



#### 

Physical injury

Injury from rotating parts.

- Only carry out work on the coupling when it is not moving.
- Secure the drive unit against being operated accidentally.
- Attach a notice to the switch stating clearly that work is being carried out on the coupling.
- Before starting any work, make sure that the unit is free from loads.

#### Intended use

The coupling is only approved for the applications specified in these instructions. Please observe all the stipulations in section Intended use (Page 13).

#### 7.2.2.1 Possible faults

| Fault                                                                     | Cause                                                                                                                                                      | Rectification                                                                              |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Sudden changes in the noise level and/<br>or sudden occurrences of shocks | Broken plate                                                                                                                                               | Follow the instructions given in section Replacing the plate pack (Page 44).               |
|                                                                           | Changed alignment                                                                                                                                          | Follow the instructions given in Section<br>Correcting the changed alignment<br>(Page 44). |
|                                                                           | Coupling not suitable for the operating conditions.                                                                                                        | Use a coupling that is suitable for the operating conditions.                              |
|                                                                           | Check the possible causes given in sec-<br>tion Unsuitable coupling (Page 43).                                                                             |                                                                                            |
|                                                                           | Incorrect assembly of the coupling.                                                                                                                        | Reassemble the coupling in accordance with these instructions.                             |
|                                                                           | Assembly-related causes (Page 43)<br>und Specific assembly-related and                                                                                     | Observe all of the specifications and<br>regulations in Chapter Assembly<br>(Page 25).     |
|                                                                           | Incorrect maintenance of the coupling.                                                                                                                     | Observe all of the specifications and                                                      |
|                                                                           | Check the possible causes in Section<br>Maintenance-related causes (Page 44)<br>und Specific assembly-related and<br>maintenance-related causes (Page 44). | regulations in Chapter Maintenance<br>(Page 45).                                           |
|                                                                           | Exceeding the coupling overload torque                                                                                                                     | Make a visual inspection.                                                                  |

7.2 Faults - causes and rectification

#### 7.2.2.2 Possible causes

#### Unsuitable coupling

- Important information on the description of the drive unit and the environment were not available when the coupling was chosen.
- System torque too high and/or torque dynamics not permissible.
- System speed too high.
- Application factor not selected correctly.
- Chemically aggressive environment not taken into consideration.
- Coupling not suitable for the ambient temperature.
- Diameter and/or assigned fit of the finished bore not permissible.
- Width across corners of the parallel keyways greater than the width across corners of the parallel keyways in accordance with DIN 6885/1 for the maximum permissible bore.
- Shaft-hub connection incorrectly sized.
- Maximum permissible load conditions not taken into consideration.
- Maximum permissible overload conditions not taken into consideration.
- Dynamic load conditions not taken into consideration.
- Coupling and the machine and/or drive train form a critical torsional, axial or bending vibration system.

#### Assembly-related causes

- Damaged parts installed.
- Shaft diameter outside the stipulated tolerance range.
- Coupling parts interchanged and hence not assigned to the specified shaft.
- Stipulated locking elements to prevent axial movements not installed.
- Stipulated tightening torques not adhered to.
- Bolts inserted dry or greased.
- Flange surfaces of screwed connections not cleaned.
- Alignment and/or shaft misalignment values not set in accordance with the instructions.
- Coupled machines were not correctly connected to the foundation so that a shifting of the machines leads to an impermissible displacement of the coupling parts.
- Coupled machines not earthed adequately.
- Coupling guard used is not suitable.

7.2 Faults - causes and rectification

#### Maintenance-related causes

- Stipulated maintenance intervals not adhered to.
- Spare parts that were used were not original spare parts from Flender.
- Flender spare parts that were used were old or damaged.
- Leak in the area of the coupling not detected so that chemically aggressive substances damage the coupling.
- Indications of faults, such as noise or vibration, were not heeded.
- Stipulated tightening torques not adhered to.
- Alignment and/or shaft misalignment values not set in accordance with the instructions.

#### Specific assembly-related and maintenance-related causes

- Plate packs not assembled.
- Plate packs do not comply with the technical specification for the specific application
- Clamping ring is not in contact with the clamping hub.

#### 7.2.3 Correcting faults

#### 7.2.3.1 Replacing the plate pack

- 1. Checking the plate pack.
- 2. If a plate is broken, then replace the complete plate pack. Observe the instructions provided in Section Replacing the plate pack (Page 45).

#### 7.2.3.2 Correcting the changed alignment

A changed alignment of the coupling during operation often occurs when the coupled machines shift towards one another. A cause of this can be loose foundation bolts.

#### Procedure

- 1. Correct the cause for the change in alignment.
- 2. Check the couplings for damage.
- 3. Check the locking elements that prevent axial movements and correct these as required.
- 4. Realign the coupling. Observe the instructions provided in the associated assembly instructions from Section Assembling the plate pack (Page 38).

# Maintenance

# 8.1 Maintenance intervals



#### 

#### Danger due to bursting of the coupling

The coupling can burst if the maintenance intervals are not adhered to. There is a risk of fatal injury from flying fragments. Bursting of the coupling can lead to an explosion in potentially explosive atmospheres.

• Please observe all the stipulations concerning maintenance of the coupling in this section.



#### 

#### Physical injury

Injury from rotating parts.

- Only carry out work on the coupling when it is not moving.
- Secure the drive unit against being operated accidentally.
- Attach a notice to the switch stating clearly that work is being carried out on the coupling.
- Before starting any work, make sure that the unit is free from loads.

Check the coupling every 12 months for any abnormalities. Carry out a visual inspection. Remove any faults. Troubleshooting notes are provided in Chapter Operation (Page 41).

# 8.2 Replacing the plate pack



#### 

#### Danger if the coupling breaks up

If you do not observe the information stipulated here regarding replacement of plate packs, this can cause the coupling to break-up in operation. There is a risk of fatal injury from flying fragments. If a coupling breaks-up in a hazardous zone, then this can result in an explosion.

Please observe all the stipulations concerning the replacement of wearing plate packs.

#### Note

#### Replacing the plate pack assembly

If individual parts of the plate pack are damaged, replace the complete plate pack assembly.

If you must replace the plate pack, then we recommend that you return the half coupling to Flender for repair and balancing.

If you replace the plate pack yourself, do not move the coupled machines.

Remove the spacer or the intermediate unit corresponding to the instructions in Section Disassembling the coupling (Page 46).

When removing and when re-assembling the plate packs, carefully follow the instructions in the associated assembly instructions from Section Assembling the plate pack (Page 38).

## 8.3 Disassembling the coupling

Disassembling the coupling involves the following steps:

- Disassembling the spacer (Page 46)
- Disassembling the intermediate unit (Page 47)
- Disassembling the hubs (Page 48)

#### 8.3.1 Disassembling the spacer

#### Procedure

- 1. Support the spacer.
- 2. Release all of the flanged nuts one after the other (6).
- 3. Remove the flanged nuts (6), the fitting bolts (1) and the (5) and the capture ring.
- 4. For types without B hub, remove the spacer and the plate packs without moving the coupled machines.
- 5. For types with B hub, remove the spacer and the plate packs by shifting the coupled machines.
- 6. Check the hubs, spacer and the plate packs for damage and protect them against corrosion.
- 7. Replace any damaged parts.

When reassembling the spacer, observe the information in chapters Assembly (Page 25) and Commissioning (Page 39).

Maintenance



6 Collar nut

Figure 8-1 Detailed view of the fitting bolt connection

#### 8.3.2 Disassembling the intermediate unit

#### Procedure

- 1. Attach the spacers (81) of the transport lock and insert the screws without tightening them (82)
- 2. Support the intermediate unit.
- 3. Remove the screws (91).
- 4. Tighten screws (82) one after the other until the spacers (81) are in contact with the flange.
- 5. Remove the intermediate unit from the centering by screwing the forcing-off screws into the forcing-off threaded holes.
- 6. Remove the intermediate unit.
- 7. Check the hubs, intermediate unit and the plate packs for damage and protect them against corrosion.
- 8. Replace any damaged parts.

When reassembling the intermediate unit, observe the information in chapters Assembly (Page 25) and Commissioning (Page 39).

#### Disassembling the intermediate unit

- 1. Secure the individual parts.
- 2. Release all of the flanged nuts one after the other (6).
- 3. Remove the flanged nuts (6), the fitting bolts (1) and the (5) and the capture ring.
- 4. Remove the plate pack.
- 5. Check the individual parts for damage and protect them against corrosion.
- 6. Replace any damaged parts.

When reassembling the intermediate unit, observe the information in chapters Assembly (Page 25) and Commissioning (Page 39).



- ⑤ Capture ring
- 6 Collar nut



#### 8.3.3 Disassembling the hubs

#### NOTICE

#### Property damage

Damage to the shaft end, the hub and/or the parallel key.

• Note the handling instructions when disassembling the hub.

The procedure for disassembling the hubs varies depending on the selected shaft-hub connection.

- Disassembling hubs with shaft-hub connection through a parallel key (Page 49)
- Disassembling the hub with shaft and hub connected through a pressurized oil interference fit (Page 50)
- Disassembling the clamping hubs (Page 52)

#### 8.3.3.1 Disassembling hubs with shaft-hub connection through a parallel key



#### 

#### Danger from burners and hot coupling parts

Risk of injury due to burners and hot surfaces. Burners or hot coupling parts can lead to an explosion in potentially explosive atmospheres.

- Wear suitable protective equipment (gloves, safety goggles).
- Ensure that the area is not at risk of explosion.

#### Procedure

- 1. Move the coupled machines apart.
- 2. Secure the hub to prevent it from falling.
- 3. Remove the axial locking element (set screw, end plate).
- 4. Use a suitable pulling fixture.
- 5. Heat up the hub using a burner above the parallel keyway along its length to maximum of 80 °C.
- 6. Withdraw the hub. Use suitable lifting gear when doing this.
- 7. Check the hub bore and the shaft for damage and protect them against corrosion.
- 8. Replace any damaged parts.

When reinstalling the coupling parts please observe the information in chapters Assembly (Page 25) and Commissioning (Page 39).

# 8.3.3.2 Disassembling the hub with shaft and hub connected through a pressurized oil interference fit



#### 

#### Oil pressure in excess of maximum permissible value

The coupling can burst. There is a risk of fatal injury from flying fragments. Bursting of the coupling can lead to an explosion in potentially explosive atmospheres.

- Do not exceed the maximum oil pressure specified in the dimension drawing.
- Keep the oil pressure constant in all oil channels during the entire procedure.



#### 

#### Danger as a result of improper handling of fixtures and pumps

Failure to handle fixtures and pumps properly can result in injuries. The coupling can burst. There is a risk of fatal injury from flying fragments. Bursting of the coupling can lead to an explosion in potentially explosive atmospheres.

- Please observe the manufacturer's information on handling the following tools:
- Pulling fixtures
- Pumps

#### 

#### Risk of injury as a result of the hub or the forcing-off mechanism suddenly releasing.

When forcing off, the released hub or forcing-off mechanism can fall.

- Use suitable lifting gear to hold the hub and the forcing-off mechanism.
- Attach an axial locking element if the pressurised oil interference fit is tapered.

#### Note

#### Leaking oil

Or:

- 1. When dismantling the coupling part, catch any oil which escapes.
- 2. Dispose of the oil according to the valid regulations.

#### **Tools required**

• One oil pump with pressure gauge (at least 2500 bar) for each oil duct.

One motor-driven oil pump. One connection that can be closed independently is required for each oil channel.

Refer to the dimension drawing for the number of oil channels.

- With a stepped bore: A motor-driven pump at the oil channel located at the point of transition from the smaller to the larger bore. A large quantity of oil per unit of time is needed here.
- Suitable connections and pipes.

• Suitable pulling fixture. Or:

Retaining plate with retaining screws or threaded spindles with nuts. Screw and spindle material must have at least at least property class 10.9; material of the nuts depending on the material of the screws or spindles.

• Hydraulic cylinder with oil pump. Note displacement and pressure of the hydraulic cylinder. Refer to the dimension drawing for the required axial force.

#### Procedure

- 1. Move the coupled machines apart.
- 2. Use a suitable pulling fixture.
- 3. Secure the hub and the forcing-off mechanism so that they cannot fall.
- 4. Remove the screw plugs (10) or (20) from the oil ducts.
- 5. Deaerate an oil pump and connect it to the oil channel in the centre.
- 6. Pressurise the oil pump to the pressure specified in the dimension drawing until oil starts to escape from the adjacent connections or the front faces. Keep the pressure constant.
- 7. Deaerate the next oil pump and connect it to the adjacent oil channel.
- 8. Repeat steps 6 and 7 for the remaining oil ducts.
- 9. If so much oil escapes when pressure is applied that the pump cannot maintain the pressure, use a higher-viscosity oil.
- 10.Pressurise the hydraulic cylinder if oil escapes from both front faces as a closed oil ring. Make sure that the hub is immediately pulled off the shaft in a swift, smooth movement.

#### Note

#### Removal in several strokes

If several strokes of the hydraulic cylinder are required to remove the part, make sure that the shaft end is positioned between two oil channels at the end of the stroke.

- 11. Remove the oil pump and the forcing-off mechanism from the hub.
- 12. Check the hub bore and the shaft for damage and protect them against corrosion.
- 13.Replace any damaged parts.

When reinstalling the coupling parts please observe the information in chapters Assembly (Page 25) and Commissioning (Page 39).

#### 8.3.3.3 Disassembling the clamping hubs

#### 

#### Risk of injury through incorrect disassembly

Risk of severe injury if the clamping ring (5) suddenly releases.

• Carefully comply with the described procedure.

#### Procedure

- 1. Move the coupled machines apart.
- 2. Secure the clamping hub (7) and the clamping ring (5) so that they cannot fall.
- 3. Carefully release all of the clamping bolts (1) one after the other through just 1/4 revolution.
- 4. Repeat Step 3 until the clamping ring (5) releases.
- 5. If the clamping ring (5) is not released, you can use the forcing-off threaded holes arranged in an offset configuration to release it. Tighten the forcing-off screws (6) one after the other in several iterations:
- 6. Withdraw the clamping hub (7) together with the clamping ring (5). Use suitable lifting gear when doing this.
- 7. Clamping hub connections that have been released do not have to be disassembled and regreased.
- 8. Check all of the individual parts for damage and protect them against corrosion.
- 9. Replace any damaged parts.

When reassembling the hubs, observe the information in chapters Assembly (Page 25) and Commissioning (Page 39).

#### See also

Lubricant (Page 82)

Maintenance



- (9) Clamping hub complete, type 124
- 125 Clamping hub complete, type 125
- Figure 8-3 Complete clamping hub assembly (12) or (22)

Maintenance

8.3 Disassembling the coupling

# Service and support

## 9.1 Contact

#### Contact

When ordering spare parts, requesting a customer service technician or in the case of technical queries, please contact our factory or one of our customer service addresses:

Flender GmbH Schlavenhorst 100 46395 Bocholt Germany Tel.: +49 (0)2871/92-0 Fax.: +49 (0)2871/92-2596 Service and support

9.1 Contact

# Disposal

# 10

## Disposal of the coupling

Dispose of the coupling parts according to applicable national regulations or recycle them.

Disposal

# Spare parts

## 11.1 Ordering spare parts

By stocking the most important spare parts at the installation site you can ensure that the coupling is ready for use at any time.

#### Note

#### Original spare parts

Use only original spare parts from Flender. Flender only accepts liability for original spare parts from Flender.

Other spare parts are not tested and approved by Flender. Non-approved spare parts may possibly change the design characteristics of the coupling and thus impact active and/or passive safety.

Flender will accept no liability or warranty whatsoever for damage occurring as a result of the use of non-approved spare parts. The same applies to any accessories that were not supplied by Flender.

You can find the available spare parts for the coupling described here at Spare parts drawing and spare parts list (Page 60).

You will find our contact data for ordering spare parts in Service and support (Page 55).

#### Information required when ordering spare parts

- Flender order number with item
- Flender drawing number
- Coupling type and size
- Part number (refer to Spare parts drawing and spare parts list (Page 60))
- Dimensions of the pare part, for example:
  - Bore
  - Bore tolerance
  - Parallel keyway and balancing
- Special dimensions, for example, flange connection dimensions, intermediate sleeve length or brake drum dimensions

- Any special properties of the spare part, such as, for example:
  - Temperature resistance
  - Electrical insulation
  - Operating fluid
  - Use in potentially explosive atmospheres
- Quantity

# 11.2 Spare parts drawing and spare parts list

#### Note

#### Replacing the plate pack assembly

If individual parts of the plate pack are damaged, replace the complete plate pack assembly.

For information about the plate pack design and structure, refer to the associated assembly instructions provided in Section Assembling the plate pack (Page 38).

# 11.2.1 Type NEN



Figure 11-1 Spare parts drawing for type NEN

| Table 11-1 | Spare parts list for type NEN |
|------------|-------------------------------|
|------------|-------------------------------|

| Part number | Designation              |
|-------------|--------------------------|
| 1           | N hub                    |
| 2           | N hub                    |
| 3           | E spacer                 |
| 4           | Plate pack               |
| 10          | Screw plug <sup>1)</sup> |
| 20          | Screw plug <sup>1)</sup> |

<sup>1)</sup> Screw plugs (10, 20) are only used in combination with a pressurized oil interference fit.

# 11.2.2 Type BEB



Figure 11-2 Spare parts drawing for type BEB

| Table 11-2 Spare parts list for type BE | =В |
|-----------------------------------------|----|
|-----------------------------------------|----|

| Part number | Designation              |
|-------------|--------------------------|
| 1           | B hub                    |
| 2           | B hub                    |
| 3           | E spacer                 |
| 4           | Plate pack               |
| 10          | Screw plug <sup>1)</sup> |
| 20          | Screw plug <sup>1)</sup> |

<sup>1)</sup> Screw plugs (10, 20) are only used in combination with a pressurized oil interference fit.

# 11.2.3 Type BEN



Figure 11-3 Spare parts drawing for type BEN

| Table 11-3 | Spare parts list for type BEN |
|------------|-------------------------------|
|------------|-------------------------------|

| Part number | Designation              |
|-------------|--------------------------|
| 1           | B hub                    |
| 2           | N hub                    |
| 3           | E spacer                 |
| 4           | Plate pack               |
| 10          | Screw plug <sup>1)</sup> |
| 20          | Screw plug <sup>1)</sup> |

<sup>1)</sup> Screw plugs (10, 20) are only used in combination with a pressurized oil interference fit.

# 11.2.4 Type MCECM



Figure 11-4 Spare parts drawing for type MCECM

| Table 11-4 | Spare parts I | ist for type MCECM |
|------------|---------------|--------------------|
|------------|---------------|--------------------|

| Part number | Designation              |
|-------------|--------------------------|
| 3           | E spacer <sup>1)</sup>   |
| 4           | Plate pack <sup>1)</sup> |
| 10          | Screw plug <sup>2)</sup> |
| 11          | M hub                    |
| 18          | C flange <sup>1)</sup>   |
| 20          | Screw plug <sup>2)</sup> |
| 21          | M hub                    |
| 28          | C flange <sup>1)</sup>   |
| 91          | Screws                   |

<sup>1)</sup> C flange (18), plate pack (4), E spacer (3), plate pack (4) and C flange (28), form the intermediate unit CEC.

<sup>2)</sup> Screw plugs (10, 20) are only used in combination with a pressurized oil interference fit.

### 11.2.5 Screw plug

The following diagram shows the screw plugs (10) or (20):



Figure 11-5 Screw plug

#### 11.2.6 Additional hubs

#### 11.2.6.1 Clamping hub complete

Instead of the N hub, typeNEN or BEN, you can also use the complete clamping hub (12) or (22). Types KEK, KEN or BEK are then obtained. You can find a description of the complete terminal hub in Section Dimension drawing of the complete clamping hub (Page 76).

#### Note

#### Replace complete clamping hub assembly (12) or (22)

If individual parts of the complete clamping hub assembly (12) or (22) are damaged, then replace the complete assembly.

| Part number | Designation              | Туре |     |     |
|-------------|--------------------------|------|-----|-----|
|             |                          | KEK  | KEN | BEK |
| 1           | B hub                    |      |     | x   |
| 2           | N hub                    |      | x   |     |
| 3           | E spacer                 | x    | x   | x   |
| 4           | Plate pack               | x    | x   | x   |
| 10          | Screw plug <sup>1)</sup> |      |     |     |
| 12          | Clamping hub complete    | x    | x   |     |
| 20          | Screw plug <sup>1)</sup> |      |     |     |
| 22          | Clamping hub complete    | x    |     | x   |

<sup>1)</sup> Screw plugs (10, 20) are only used in combination with a pressurized oil interference fit.

Spare parts

11.2 Spare parts drawing and spare parts list

# **Technical data**

# A

# A.1 Torques, speeds, geometry data and weights

In this section you can find dimension drawings and technical data for N-ARPEX couplings, seriesARN-6 of the following types:

- Type NEN, dimension drawing (Page 68) and technical data (Page 69)
- Type BEB, dimension drawing (Page 70) and technical data (Page 71)
- Type BEN, dimension drawing (Page 72) and technical data (Page 73)
- Type MCECM, dimension drawing (Page 74) and technical data (Page 75)
- Clamping hub complete, dimension drawing (Page 76) and technical data (Page 77)

A.1 Torques, speeds, geometry data and weights

# A.1.1 Dimension drawing of type NEN





A.1 Torques, speeds, geometry data and weights

## A.1.2 Technical data of type NEN

| Size  | Rated tor-<br>que | Speed            | Maximum<br>bore <sup>1)</sup> |     |     |     |     |      |      |     |       |     | Weight <sup>2)</sup><br>m |
|-------|-------------------|------------------|-------------------------------|-----|-----|-----|-----|------|------|-----|-------|-----|---------------------------|
|       | Τ <sub>κΝ</sub>   | n <sub>max</sub> | D1                            | DA  | ND1 | NL1 | DZ  | SZ   | S1   | S   | LZ    | LG  |                           |
|       |                   |                  | D2                            |     | ND2 | NL2 |     |      |      |     |       |     | kg                        |
|       | Nm                | rpm              | mm                            | mm  | mm  | mm  | mm  | mm   | mm   | mm  | mm    | mm  |                           |
| 86-6  | 350               | 24 000           | 42                            | 86  | 56  | 45  | 46  | 5.5  | 8.0  | 100 | 84    | 190 | 2.1                       |
| 103-6 | 500               | 20 000           | 55                            | 103 | 73  | 55  | 63  | 4.0  | 8.4  | 100 | 83.2  | 210 | 3.1                       |
| 122-6 | 950               | 17 000           | 65                            | 122 | 85  | 65  | 73  | 4.0  | 8.8  | 100 | 82.4  | 230 | 5.1                       |
| 133-6 | 1 250             | 15 000           | 75                            | 133 | 96  | 75  | 85  | 5.0  | 9.6  | 100 | 80.8  | 250 | 6.5                       |
| 159-6 | 2 100             | 13 000           | 80                            | 159 | 104 | 80  | 100 | 5.0  | 11.6 | 100 | 76.8  | 260 | 9.5                       |
| 174-6 | 2 400             | 12 000           | 90                            | 174 | 118 | 85  | 116 | 5.5  | 12.8 | 100 | 74.4  | 270 | 12.0                      |
| 184-6 | 3 800             | 11 000           | 95                            | 184 | 124 | 90  | 124 | 7.0  | 14.6 | 140 | 110.8 | 320 | 16.4                      |
| 203-6 | 5 000             | 10 000           | 100                           | 203 | 135 | 95  | 128 | 6.5  | 15.0 | 140 | 110   | 330 | 21.1                      |
| 217-6 | 6 200             | 9 500            | 110                           | 217 | 143 | 105 | 140 | 7.5  | 15.4 | 140 | 109.2 | 350 | 24.9                      |
| 251-6 | 10 500            | 8 000            | 120                           | 251 | 160 | 110 | 160 | 10.0 | 20.6 | 180 | 138.8 | 400 | 38.8                      |
| 268-6 | 13 800            | 7 500            | 130                           | 268 | 170 | 130 | 170 | 10.0 | 22.0 | 180 | 136   | 440 | 49.5                      |
| 291-6 | 18 200            | 7 000            | 145                           | 291 | 190 | 140 | 190 | 10.0 | 22.8 | 180 | 134.4 | 460 | 61.9                      |
| 318-6 | 23 000            | 6 500            | 155                           | 318 | 205 | 150 | 205 | 12.5 | 23.2 | 200 | 153.6 | 500 | 83.1                      |
| 343-6 | 28 000            | 6 000            | 170                           | 343 | 230 | 160 | 230 | 15.0 | 24.0 | 200 | 152   | 520 | 104.1                     |

Table A-1 Torques, speeds, geometry data and weights of type NEN

<sup>1)</sup> Maximum bore for parallel keyway in accordance with DIN 6885/1.

<sup>2)</sup> Weight applies to one coupling with maximum bore.

#### Note

For a deviating LZ dimension, you can calculate the new S dimension as follows:

 $S_{new} = LZ_{available} + 2 \times S1$ 

#### Technical data

A.1 Torques, speeds, geometry data and weights

# A.1.3 Dimension drawing of type BEB



Figure A-2 Type BEB

A.1 Torques, speeds, geometry data and weights

# A.1.4 Technical data of type BEB

| Size  | Rated tor-<br>que | Speed<br>n <sub>max</sub> | Maximum<br>bore <sup>1)</sup> | _   |     |     |     |      |      |    |       |    |     |     | Weight <sup>2)</sup><br>m |
|-------|-------------------|---------------------------|-------------------------------|-----|-----|-----|-----|------|------|----|-------|----|-----|-----|---------------------------|
|       | Τ <sub>κΝ</sub>   | - "III <b>GA</b>          | D1                            | DA  | ND1 | NL1 | DZ  | SZ   | S1   | S  | LZ    | Α  | Ρ   | LG  |                           |
|       |                   | rpm                       | D2                            |     | ND2 | NL2 |     |      |      |    |       |    |     |     | kg                        |
|       | Nm                |                           | mm                            | mm  | mm  | mm  | mm  | mm   | mm   | mm | mm    | mm | mm  | mm  |                           |
| 86-6  | 350               | 24 000                    | 22                            | 86  | 33  | 30  | 46  | 5.5  | 8.0  | 12 | 44.0  | 8  | 32  | 72  | 1.5                       |
| 103-6 | 500               | 20 000                    | 38                            | 103 | 53  | 34  | 63  | 4.0  | 8.4  | 4  | 43.2  | 8  | 32  | 72  | 2.0                       |
| 122-6 | 950               | 17 000                    | 48                            | 122 | 63  | 56  | 73  | 4.0  | 8.8  | 4  | 82.4  | 8  | 38  | 116 | 4.3                       |
| 133-6 | 1 250             | 15 000                    | 55                            | 133 | 72  | 56  | 85  | 5.0  | 9.6  | 4  | 80.8  | 7  | 38  | 116 | 5.2                       |
| 159-6 | 2 100             | 13 000                    | 65                            | 159 | 85  | 57  | 100 | 5.0  | 11.6 | 4  | 76.8  | 11 | 48  | 118 | 7.8                       |
| 174-6 | 2 400             | 12 000                    | 75                            | 174 | 98  | 77  | 116 | 5.5  | 12.8 | 4  | 114.4 | 10 | 48  | 158 | 11.0                      |
| 184-6 | 3 800             | 11 000                    | 80                            | 184 | 104 | 80  | 124 | 7.0  | 14.6 | 4  | 110.8 | 17 | 64  | 164 | 14.7                      |
| 203-6 | 5 000             | 10 000                    | 85                            | 203 | 111 | 80  | 128 | 6.5  | 15.0 | 4  | 110.0 | 16 | 64  | 164 | 17.7                      |
| 217-6 | 6 200             | 9 500                     | 90                            | 217 | 117 | 81  | 140 | 7.5  | 15.4 | 4  | 109.2 | 14 | 66  | 166 | 21.2                      |
| 251-6 | 10 500            | 8 000                     | 100                           | 251 | 130 | 102 | 160 | 10.0 | 20.6 | 6  | 138.8 | 15 | 77  | 210 | 34.4                      |
| 268-6 | 13 800            | 7 500                     | 108                           | 268 | 141 | 105 | 170 | 10.0 | 22.0 | 6  | 136.0 | 17 | 89  | 216 | 43.5                      |
| 291-6 | 18 200            | 7 000                     | 120                           | 291 | 156 | 106 | 190 | 10.0 | 22.8 | 6  | 134.4 | 15 | 89  | 218 | 52.4                      |
| 318-6 | 23 000            | 6 500                     | 130                           | 318 | 169 | 118 | 205 | 12.5 | 23.2 | 6  | 153.6 | 20 | 100 | 242 | 71.4                      |
| 343-6 | 28 000            | 6 000                     | 150                           | 343 | 195 | 143 | 230 | 15.0 | 24.0 | 6  | 202.0 | 19 | 100 | 292 | 93.1                      |

Table A-2 Torques, speeds, geometry data and weights of type BEB

<sup>1)</sup> Maximum bore for parallel keyway in accordance with DIN 6885/1.

<sup>2)</sup> Weight applies to one coupling with maximum bore.

#### Technical data

A.1 Torques, speeds, geometry data and weights

# A.1.5 Dimension drawing of type BEN



Figure A-3 Type BEN
## A.1.6 Technical data of type BEN

| Size  | Rated tor-<br>que | Speed<br>n <sub>max</sub> | Maxi<br>bo | mum<br>re <sup>1)</sup> | DA  | ND1 | ND2 | NL1 | NL2 | DZ  | sz   | S1   | s   | A  | Р   | LG  | Weight <sup>2)</sup><br>m |
|-------|-------------------|---------------------------|------------|-------------------------|-----|-----|-----|-----|-----|-----|------|------|-----|----|-----|-----|---------------------------|
|       | T <sub>KN</sub>   | rpm                       | D1         | D2                      | mm   | mm   | mm  | mm | mm  | mm  | kg                        |
|       | Nm                | •                         | mm         | mm                      |     |     |     |     |     |     |      |      |     |    |     |     |                           |
| 86-6  | 350               | 24 000                    | 22         | 42                      | 86  | 33  | 56  | 30  | 45  | 46  | 5.5  | 8.0  | 58  | 8  | 32  | 118 | 1.6                       |
| 103-6 | 500               | 20 000                    | 38         | 55                      | 103 | 53  | 73  | 34  | 55  | 63  | 4.0  | 8.4  | 59  | 8  | 32  | 127 | 2.4                       |
| 122-6 | 950               | 17 000                    | 48         | 65                      | 122 | 63  | 85  | 56  | 65  | 73  | 4.0  | 8.8  | 82  | 8  | 38  | 194 | 4.7                       |
| 133-6 | 1 250             | 15 000                    | 55         | 75                      | 133 | 72  | 96  | 56  | 75  | 85  | 5.0  | 9.6  | 84  | 7  | 38  | 196 | 5.8                       |
| 159-6 | 2 100             | 13 000                    | 65         | 80                      | 159 | 85  | 104 | 57  | 80  | 100 | 5.0  | 11.6 | 86  | 11 | 48  | 200 | 8.6                       |
| 174-6 | 2 400             | 12 000                    | 75         | 90                      | 174 | 98  | 118 | 77  | 85  | 116 | 5.5  | 12.8 | 108 | 10 | 48  | 262 | 11.8                      |
| 184-6 | 3 800             | 11 000                    | 80         | 95                      | 184 | 104 | 124 | 80  | 90  | 124 | 7.0  | 14.6 | 108 | 17 | 64  | 268 | 15.6                      |
| 203-6 | 5 000             | 10 000                    | 85         | 100                     | 203 | 111 | 135 | 80  | 95  | 128 | 6.5  | 15.0 | 113 | 16 | 64  | 273 | 19.4                      |
| 217-6 | 6 200             | 9 500                     | 90         | 110                     | 217 | 117 | 143 | 81  | 105 | 140 | 7.5  | 15.4 | 114 | 14 | 66  | 276 | 23.1                      |
| 251-6 | 10 500            | 8 000                     | 100        | 120                     | 251 | 130 | 160 | 102 | 110 | 160 | 10.0 | 20.6 | 143 | 15 | 77  | 347 | 36.6                      |
| 268-6 | 13 800            | 7 500                     | 108        | 130                     | 268 | 141 | 170 | 105 | 130 | 170 | 10.0 | 22.0 | 145 | 17 | 89  | 355 | 46.5                      |
| 291-6 | 18 200            | 7 000                     | 120        | 145                     | 291 | 156 | 190 | 106 | 140 | 190 | 10.0 | 22.8 | 149 | 15 | 89  | 361 | 57.1                      |
| 318-6 | 23 000            | 6 500                     | 130        | 155                     | 318 | 169 | 205 | 118 | 150 | 205 | 12.5 | 23.2 | 162 | 20 | 100 | 398 | 77.3                      |
| 343-6 | 28 000            | 6 000                     | 150        | 170                     | 343 | 195 | 230 | 143 | 160 | 230 | 15.0 | 24.0 | 128 | 19 | 100 | 414 | 100.6                     |

Table A-3 Torques, speeds, geometry data and weights of type BEN

<sup>1)</sup> Maximum bore for parallel keyway in accordance with DIN 6885/1.

<sup>2)</sup> Weight applies to one coupling with maximum bore.

#### Technical data

A.1 Torques, speeds, geometry data and weights

## A.1.7 Dimension drawing of type MCECM





### A.1.8 Technical data of type MCECM

| Size  | Rated tor-<br>que | Speed            | Maximum<br>bore <sup>1)</sup> |     |     |     |     |      |      |     |       |     | Weight <sup>2</sup> |
|-------|-------------------|------------------|-------------------------------|-----|-----|-----|-----|------|------|-----|-------|-----|---------------------|
|       | Τ <sub>κΝ</sub>   | n <sub>max</sub> | D1                            | DA  | ND1 | NL1 | DZ  | SZ   | S1   | S   | LZ    | LG  | m                   |
|       |                   |                  | D2                            |     | ND2 | NL2 |     |      |      |     |       |     |                     |
|       | Nm                | rpm              | mm                            | mm  | mm  | mm  | mm  | mm   | mm   | mm  | mm    | mm  | kg                  |
| 86-6  | 350               | 24 000           | 42                            | 86  | 62  | 42  | 46  | 5.5  | 8.0  | 140 | 84.0  | 224 | 3.1                 |
| 103-6 | 500               | 20 000           | 55                            | 103 | 72  | 55  | 63  | 4.0  | 8.4  | 140 | 83.2  | 250 | 4.4                 |
| 122-6 | 950               | 17 000           | 70                            | 122 | 91  | 70  | 73  | 4.0  | 8.8  | 140 | 82.4  | 280 | 7.6                 |
| 133-6 | 1 250             | 15 000           | 80                            | 133 | 103 | 80  | 85  | 5.0  | 9.6  | 140 | 80.8  | 300 | 9.4                 |
| 159-6 | 2 100             | 13 000           | 95                            | 159 | 123 | 95  | 100 | 5.0  | 11.6 | 140 | 76.8  | 330 | 15.0                |
| 174-6 | 2 400             | 12 000           | 105                           | 174 | 136 | 105 | 116 | 5.5  | 12.8 | 140 | 74.4  | 350 | 19.4                |
| 184-6 | 3 800             | 11 000           | 110                           | 184 | 142 | 110 | 124 | 7.0  | 14.6 | 200 | 110.8 | 420 | 25.6                |
| 203-6 | 5 000             | 10 000           | 115                           | 203 | 150 | 115 | 128 | 6.5  | 15.0 | 200 | 110.0 | 430 | 31.8                |
| 217-6 | 6 200             | 9 500            | 130                           | 217 | 168 | 130 | 140 | 7.5  | 15.4 | 200 | 109.2 | 460 | 39.7                |
| 251-6 | 10 500            | 8 000            | 150                           | 251 | 193 | 150 | 160 | 10.0 | 20.6 | 250 | 138.8 | 550 | 62.7                |
| 268-6 | 13 800            | 7 500            | 160                           | 268 | 206 | 160 | 170 | 10.0 | 22.0 | 250 | 136.0 | 570 | 76.0                |
| 291-6 | 18 200            | 7 000            | 170                           | 291 | 221 | 170 | 190 | 10.0 | 22.8 | 250 | 134.4 | 590 | 92.4                |
| 318-6 | 23 000            | 6 500            | 190                           | 318 | 245 | 190 | 205 | 12.5 | 23.2 | 300 | 153.6 | 680 | 131.7               |
| 343-6 | 28 000            | 6 000            | 205                           | 343 | 267 | 205 | 230 | 15.0 | 24.0 | 300 | 152.0 | 710 | 161.6               |

Table A-4 Torques, speeds, geometry data and weights of type MCECM

<sup>1)</sup> Maximum bore for parallel keyway in accordance with DIN 6885/1.

<sup>2)</sup> Weight applies to one coupling with maximum bore.

#### Note

For a deviating LZ dimension, you can calculate the new S dimension as follows:

 $S_{new} = S_{Table} + LZ_{available} - LZ_{Table}$ 







2

Clamping hub, type 125
 Clamping hub, type 124

Figure A-5 Clamping hub

#### A.1.10 Technical data of the complete clamping hub

| Size  | Clamping hub | Bo      | ore     |     |     |     | Weight <sup>1)</sup> |
|-------|--------------|---------|---------|-----|-----|-----|----------------------|
|       | Туре         | D1 / D2 | D1 / D2 | DA  | ND1 | NL1 | m                    |
|       |              | min.    | max.    |     | ND2 | NL2 |                      |
|       |              | mm      | mm      | mm  | mm  | mm  | kg                   |
| 86-6  | 124          | 19      | 25      | 86  | 50  | 35  | 0.5                  |
|       | 125          |         |         |     |     |     |                      |
| 103-6 | 124          | 25      | 38      | 103 | 67  | 40  | 0.9                  |
|       | 125          |         |         |     |     |     |                      |
| 122-6 | 124          | 30      | 42      | 122 | 77  | 45  | 1.5                  |
|       | 125          |         |         |     |     |     |                      |
| 133-6 | 124          | 32      | 50      | 133 | 88  | 50  | 2.0                  |
|       | 125          |         |         |     |     |     |                      |
| 159-6 | 124          | 35      | 60      | 159 | 105 | 55  | 3.2                  |
|       | 125          |         |         |     |     |     |                      |
| 174-6 | 124          | 40      | 70      | 174 | 120 | 65  | 4.6                  |
|       | 125          |         |         |     |     |     |                      |
| 184-6 | 124          | 45      | 70      | 184 | 126 | 70  | 5.9                  |
|       | 125          |         |         |     |     |     |                      |
| 203-6 | 124          | 50      | 80      | 203 | 139 | 75  | 7.4                  |
|       | 125          |         |         |     |     |     |                      |
| 217-6 | 124          | 60      | 90      | 217 | 147 | 90  | 9.2                  |
|       | 125          |         |         |     |     |     |                      |
| 251-6 | 124          | 70      | 95      | 251 | 168 | 95  | 14.0                 |
|       | 125          | -       |         |     |     |     |                      |
| 268-6 | 124          | 75      | 100     | 268 | 175 | 115 | 18.5                 |
|       | 125          | -       |         |     |     |     |                      |
| 291-6 | 124          | 80      | 120     | 291 | 195 | 125 | 22.9                 |
|       | 125          |         |         |     |     |     |                      |
| 318-6 | 124          | 85      | 120     | 318 | 209 | 140 | 31.5                 |
|       | 125          |         |         |     |     |     |                      |
| 343-6 | 124          | 95      | 140     | 343 | 234 | 150 | 39.6                 |
|       | 125          | -       |         |     |     |     |                      |

Table A-5 Speeds, geometry data and weights of the complete terminal hub

<sup>1)</sup> Weight applies to one coupling hub with maximum bore

#### Technical data

A.1 Torques, speeds, geometry data and weights

| Table A-6 | Maximum torque that can be transmitted by the clamping hub depending on the finished bore |
|-----------|-------------------------------------------------------------------------------------------|
|-----------|-------------------------------------------------------------------------------------------|

| Bore    | Size  |                                       |         |          |          |           |         |         |       |       |       |       |       |       |
|---------|-------|---------------------------------------|---------|----------|----------|-----------|---------|---------|-------|-------|-------|-------|-------|-------|
| 1)      | 86-6  | 103-6                                 | 122-6   | 133-6    | 159-6    | 174-6     | 184-6   | 203-6   | 217-6 | 251-6 | 268-6 | 291-6 | 318-6 | 343-6 |
|         | Rated | Rated coupling torque T <sub>KN</sub> |         |          |          |           |         |         |       |       |       |       |       |       |
|         | Nm    |                                       |         |          |          |           |         |         |       |       |       |       |       |       |
|         | 350   | 500                                   | 950     | 1250     | 2100     | 2400      | 3800    | 5000    | 6200  | 10500 | 13800 | 18200 | 23000 | 28000 |
| D1 / D2 |       | num torq                              | ue that | can be t | transmit | tted by t | he clam | ping hu | b     |       |       |       |       |       |
| mm      | Nm    |                                       |         | :        | :        |           |         |         |       |       |       |       |       |       |
| 19      | 400   | -                                     | -       | -        | -        | -         | -       | -       | -     | -     | -     | -     | -     | -     |
| 20      | 460   | -                                     | -       | -        | -        | -         | -       | -       | -     | -     | -     | -     | -     |       |
| 22      | 470   | -                                     | -       | -        | -        | -         | -       | -       | -     | -     | -     | -     | -     |       |
| 24      | 350   | -                                     | -       | -        | -        | -         | -       | -       | -     | -     | -     | -     | -     |       |
| 25      | 370   | 480                                   | -       | -        | -        | -         | -       | -       | -     | -     | -     | -     | -     | -     |
| 28      | -     | 870                                   | -       | -        | -        | -         | -       | -       | -     | -     | -     | -     | -     | -     |
| 30      | -     | 1150                                  | 1770    | -        | -        | -         | -       | -       | -     | -     | -     | -     | -     | -     |
| 32      | -     | 1140                                  | 1830    | 2300     | -        | -         | -       | -       | -     | -     | -     | -     | -     | -     |
| 35      | -     | 570                                   | 1420    | 2360     | 3050     | -         | -       | -       | -     | -     | -     | -     | -     | -     |
| 38      | -     | 830                                   | 1720    | 3040     | 2710     | -         | -       | -       | -     | -     | -     | -     | -     | -     |
| 40      | -     | -                                     | 1370    | 2610     | 3660     | 3680      | -       | -       | -     | -     | -     | -     | -     | -     |
| 42      | -     | -                                     | 1670    | 2930     | 2180     | 4020      | -       | -       | -     | -     | -     | -     | -     | -     |
| 45      | -     | -                                     | -       | 2120     | 3750     | 4110      | 5780    | -       | -     | -     | -     | -     | -     | -     |
| 48      | -     | -                                     | -       | 2480     | 4160     | 4930      | 6200    | -       | -     | -     | -     | -     | -     | -     |
| 50      | -     | -                                     | -       | 2240     | 2300     | 4300      | 5840    | 7190    | -     | -     | -     | -     | -     | -     |
| 55      | -     | -                                     | -       | -        | 3310     | 5370      | 6410    | 7970    | -     | -     | -     | -     | -     | -     |
| 60      | -     | -                                     | -       | -        | 3260     | 3730      | 5370    | 8840    | 7570  | -     | _     | -     | -     | -     |
| 65      | -     | -                                     | -       | -        | -        | 4700      | 6240    | 8890    | 10390 | -     | _     | _     | _     | -     |
| 70      | -     | -                                     | -       | -        | -        | 4150      | 5920    | 8460    | 10640 | 14050 | _     | _     | -     | -     |
| 75      | -     | -                                     | -       | -        | -        | -         | -       | 7960    | 9590  | 15350 | 20710 | _     | _     | -     |
| 80      | -     | -                                     | -       | -        | -        | -         | -       | 7340    | 8850  | 13510 | 20120 | 31840 | _     | -     |
| 85      | -     | -                                     | -       | -        | -        | -         | -       | -       | 7890  | 16370 | 21130 | 31230 | 36420 | -     |
| 90      | _     | _                                     | _       | _        | _        | _         | _       | _       | 6290  | 14300 | 20810 | 33300 | 39050 | _     |
| 95      | _     | -                                     | _       | _        | _        | _         | _       | _       | _     | 13310 | 18570 | 33530 | 35940 | 54230 |
| 100     | _     | _                                     | _       | _        | _        | _         | _       | _       | -     | -     | 14440 | 31710 | 37500 | 56580 |
| 110     | _     | -                                     | _       | _        | _        | _         | _       | -       | -     | -     | -     | 29020 | 35200 | 5690  |
| 120     | _     | -                                     | _       | -        | -        | _         | _       | -       | -     | -     | -     | 22600 | 31490 | 5358  |
| 130     | _     | -                                     | _       | _        | _        | _         | _       | _       | -     | -     | _     | -     | -     | 5091  |
| 140     | _     | -                                     | _       | _        | _        | _         | _       | -       | -     | -     | -     | -     | -     | 43600 |

1) Finished bore / shaft with standard G6 / h6 fit.

A.2 Shaft misalignment values during operation

#### Note

Risk of explosion when the maximum torque that can be transmitted by the friction-locked connection is exceeded

The maximum torque that can occur in operation must not exceed the maximum torque that can be transmitted using the friction-locked connection.

The maximum torques that can be transmitted for the clamping hub listed here are applicable for the standard G6/h6 fit.

Contact Flender for different finished bores and/or fit pairs.

### A.2 Shaft misalignment values during operation

The following table shows the maximum permissible shaft misalignment values  $\Delta Ka_{perm}$  and  $\Delta Kw_{perm}$ . The values are rounded and specified in mm.

| Size  | Permiss                                             | sible ang | ular offse | et ±∆Kw <sub>pe</sub> | em   |      |      |      |      |      |     |
|-------|-----------------------------------------------------|-----------|------------|-----------------------|------|------|------|------|------|------|-----|
|       | 0.0°                                                | 0.1°      | 0.2°       | 0.3°                  | 0.4° | 0.5° | 0.6° | 0.7° | 0.8° | 0.9° | 1.0 |
|       | Permissible axial offset ±ΔKa <sub>perm</sub> in mm |           |            |                       |      |      |      |      |      |      |     |
| 86-6  | 1.2                                                 | 1.1       | 1.0        | 0.8                   | 0.7  | 0.6  | 0.5  | 0.4  | 0.2  | 0.1  | 0.0 |
| 103-6 | 1.4                                                 | 1.3       | 1.1        | 1.0                   | 0.8  | 0.7  | 0.6  | 0.4  | 0.3  | 0.1  | 0.0 |
| 122-6 | 2.0                                                 | 1.8       | 1.6        | 1.4                   | 1.2  | 1.0  | 0.8  | 0.6  | 0.4  | 0.2  | 0.0 |
| 133-6 | 2.2                                                 | 2.0       | 1.8        | 1.5                   | 1.3  | 1.1  | 0.9  | 0.7  | 0.4  | 0.2  | 0.0 |
| 159-6 | 2.6                                                 | 2.3       | 2.1        | 1.8                   | 1.6  | 1.3  | 1.0  | 0.8  | 0.5  | 0.3  | 0.0 |
| 174-6 | 3.0                                                 | 2.7       | 2.4        | 2.1                   | 1.8  | 1.5  | 1.2  | 0.9  | 0.6  | 0.3  | 0.0 |
| 184-6 | 3.2                                                 | 2.9       | 2.6        | 2.2                   | 1.9  | 1.6  | 1.3  | 1.0  | 0.6  | 0.3  | 0.0 |
| 203-6 | 3.4                                                 | 3.1       | 2.7        | 2.4                   | 2.0  | 1.7  | 1.4  | 1.0  | 0.7  | 0.3  | 0.0 |
| 217-6 | 3.4                                                 | 3.1       | 2.7        | 2.4                   | 2.0  | 1.7  | 1.4  | 1.0  | 0.7  | 0.3  | 0.0 |
| 251-6 | 4.1                                                 | 3.7       | 3.3        | 2.9                   | 2.5  | 2.1  | 1.6  | 1.2  | 0.8  | 0.4  | 0.0 |
| 268-6 | 4.2                                                 | 3.8       | 3.4        | 2.9                   | 2.5  | 2.1  | 1.7  | 1.3  | 0.8  | 0.4  | 0.0 |
| 291-6 | 4.6                                                 | 4.1       | 3.7        | 3.2                   | 2.8  | 2.3  | 1.8  | 1.4  | 0.9  | 0.5  | 0.0 |
| 318-6 | 5.0                                                 | 4.5       | 4.0        | 3.5                   | 3.0  | 2.5  | 2.0  | 1.5  | 1.0  | 0.5  | 0.0 |
| 343-6 | 5.3                                                 | 4.8       | 4.2        | 3.7                   | 3.2  | 2.7  | 2.1  | 1.6  | 1.1  | 0.5  | 0.0 |

 Table A-7
 Maximum permissible shaft misalignment values during operation

The maximum permissible radial misalignment  $\Delta Kr_{\mbox{\tiny perm}}$  depends on the distance between shafts S.

Calculate the permissible radial misalignment  $\Delta Kr_{perm}$  as follows:

Type NEN, KEN, KEK:  $\Delta Kr_{perm} = (S - S1) \times tan (\Delta Kw)$  A.3 Tightening torques and widths A/F

Type BEB, BEN, BEK und MCECM:  $\Delta Kr_{perm} = (LZ + S1) \times tan (\Delta Kw)$ 

Note

The permissible shaft misalignments  $\Delta Ka$ ,  $\Delta Kr$  and  $\Delta Kw$  are maximum values, and it is not permissible that they simultaneously occur.

## A.3 Tightening torques and widths A/F

For tightening torques for bolting the plate packs, refer to the associated mounting instructions provided in Section Assembling the plate pack (Page 38).

#### A.3.1 Threaded joint C flange with the M hub

| Size  | Bolt (91) | Tightening torque | Width across flats<br>Allen screw |
|-------|-----------|-------------------|-----------------------------------|
|       |           | T <sub>A</sub>    | SW                                |
|       |           | Nm                | mm                                |
| 86-6  | M6        | 10                | 5                                 |
| 103-6 | M8        | 25                | 6                                 |
| 122-6 | M8        | 25                | 6                                 |
| 133-6 | M8        | 25                | 6                                 |
| 159-6 | M10       | 49                | 8                                 |
| 174-6 | M10       | 49                | 8                                 |
| 184-6 | M12       | 86                | 10                                |
| 203-6 | M14       | 135               | 12                                |
| 217-6 | M14       | 135               | 12                                |
| 251-6 | M16       | 210               | 14                                |
| 268-6 | M18       | 290               | 14                                |
| 291-6 | M20       | 410               | 17                                |
| 318-6 | M22       | 560               | 17                                |
| 343-6 | M22       | 560               | 17                                |

Table A-8 Tightening torques and widths across flats for the bolt connection C flange with the M hub

Apply the recommended tightening torques in accordance with the stipulations in section Tightening procedure (Page 82).

A.3 Tightening torques and widths A/F

### A.3.2 Bolting of the complete clamping hub

| Size  | Clamping bolt | Tightening torque | Width across flats |                         |  |  |  |
|-------|---------------|-------------------|--------------------|-------------------------|--|--|--|
|       |               |                   | Туре 124           | Type 125<br>Allen screw |  |  |  |
|       |               |                   | Hexagon head bolt  |                         |  |  |  |
|       |               | T <sub>A</sub>    | SW                 | SW                      |  |  |  |
|       |               | Nm                | mm                 | mm                      |  |  |  |
| 86-6  | M5            | 8                 | 8                  | 4                       |  |  |  |
| 103-6 | M6            | 14                | 10                 | 5                       |  |  |  |
| 122-6 | M6            | 14                | 10                 | 5                       |  |  |  |
| 133-6 | M8            | 35                | 13                 | 6                       |  |  |  |
| 159-6 | M8            | 35                | 13                 | 6                       |  |  |  |
| 174-6 | M10           | 69                | 17                 | 8                       |  |  |  |
| 184-6 | M10           | 69                | 17                 | 8                       |  |  |  |
| 203-6 | M12           | 120               | 19                 | 10                      |  |  |  |
| 217-6 | M10           | 69                | 17                 | 8                       |  |  |  |
| 251-6 | M12           | 120               | 19                 | 10                      |  |  |  |
| 268-6 | M12           | 120               | 19                 | 10                      |  |  |  |
| 291-6 | M16           | 290               | 24                 | 14                      |  |  |  |
| 318-6 | M16           | 290               | 24                 | 14                      |  |  |  |
| 343-6 | M16           | 290               | 24                 | 14                      |  |  |  |

 Table A-9
 Tightening torques and widths across flats for the bolt connection of the complete clamping hub

Apply the recommended tightening torques in accordance with the stipulations in section Tightening procedure (Page 82).

A.4 Tightening procedure

# A.4 Tightening procedure

Tighten fastening screws to the specified tightening torque in accordance with the following table:

| Table A-10 | Tightening procedure |
|------------|----------------------|
|------------|----------------------|

| Scatter of the torque applied at the tool | Tightening procedure<br>(As a rule, the tightening procedures listed are within the specified tool<br>torque scatter) |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| ±5 %                                      | Hydraulic tightening with mechanical screwdriver                                                                      |
|                                           | <ul> <li>Torque-controlled tightening with a torque wrench or a torque<br/>wrench that gives a signal</li> </ul>      |
|                                           | <ul> <li>Tightening with a precision mechanical screwdriver with dynamic torque measurement</li> </ul>                |

The tightening torques apply to screws/bolts with untreated surfaces that are not oiled or are only lightly oiled, and for screws/bolts that are used with a liquid screw locking agent in accordance with these instructions. Use with lubricant paint or lubricant is not permitted.

## A.5 Lubricant

| Lubricant paste             | Manufacturer                                               |  |
|-----------------------------|------------------------------------------------------------|--|
| OPTIMOL OPTIMOLY PASTE PL   | Castrol Industrie GmbH<br>41179 Mönchengladbach<br>Germany |  |
| LP 430                      | Microgleit GmbH<br>74357 Bönnigheim<br>Germany             |  |
| AEMA-SOL M019 P/PS          | Matthes GmbH<br>42653 Solingen<br>Germany                  |  |
| Klüberpaste ALTEMP QNB 50   | Klüber Lubrication KG<br>81379 Munich<br>Germany           |  |
| Klüberpaste 46 MR 401       | Klüber Lubrication KG<br>81379 Munich<br>Germany           |  |
| MOLYCOTE G-RAPID PLUS PASTE | Dow Corning Europe S.A.<br>7180 Seneffe<br>Belgium         |  |

# Quality documents

B

B.1 Declaration of Conformity

B.1 Declaration of Conformity

#### EU declaration of conformity

Product: FLENDER N-ARPEX® coupling Type ARN-6 Name and address of the manufacturer: Flender GmbH Schlavenhorst 100 46395 Bocholt Deutschland – Germany

This declaration of conformity is issued under the sole responsibility of the manufacturer.

Object of the declaration is the product specified above.

The object of the declaration described above is in conformity with the relevant harmonisation

legislation of the Union: – Directive 2014/34/EU

Official Journal L 96, 29.3.2014, pages 309-356

Harmonised standards or other technical specifications, on which the declaration of conformity is based:

EN 1127-1 : 2011 EN 1710 : 2008 EN 13463-1 : 2009 EN 13463-5 : 2011

The notified body, DEKRA EXAM GmbH, code number 0158, has received the technical documentation.

i.V.

i.V.

Signed for and on behalf of: Flender GmbH

Terbe

Bocholt, 2017-10-01

Felix Henseler, Head of PD MD AP

Bocholt, 2017-10-01

Thomas Tebrügge, Head of PD MD AP COU BA

AA 8714\_KE\_en\_FLE

# FLENDER COUPLINGS

N-ARPEX Operating Instructions 8714en Edition 10/2017

Flender GmbH Alfred-Flender-Straße 77 46395 Bocholt GERMANY



flender.com